This 2D Euler setup simulates a planar shock travelling in positive y direction through the domain. It makes use of a covolume filter with some weak spectral filtering, to overcome oscillation residues at element boundaries after the shock passed them. In the time discretization a Taylor Runge-Kutta scheme is employed, that allows for an arbitrary number of stages.
The complete configuration is provided in the ateles.lua
file:
-- Stabilized shock setup for 2D Euler equations.
-- This setup simulates a planar shock that travels along the y axis.
-- The simulation is stabilized by a covolume filter with spectral viscosity.
require('seeder')
-- seeder.lua sets a different timing file name, set it to the usual one again.
timing_file = 'timing.res'
-- global simulation options
simulation_name = 'euler_2d'
sim_control = {
time_control = {
min = 0,
max = 0.015
}
}
check = { interval = 1 }
-- Mesh definitions --
mesh = 'mesh/'
-- Equation definitions --
equation = {
name = 'euler_2d',
therm_cond = 2.555e-02,
isen_coef = 1.4,
r = 296.0,
material = {
characteristic = 0,
relax_velocity = {0, 0},
relax_temperature = 0
}
}
-- (cv) heat capacity and (r) ideal gas constant
equation["cv"] = equation["r"] / (equation["isen_coef"] - 1.0)
-- The state right of the shock
rho_r = 1.0
u_r = 0.0
p_r = 1.0
mach_r = u_r/math.sqrt( equation.isen_coef * p_r / rho_r )
-- Shock properties
shockMach = 2.0
shockXCoord = -1.2
shockSpeed = shockMach * math.sqrt(equation.isen_coef * p_r / rho_r )
-- The state left of the shock (evaluated by Rankine-Huginoit condition)
gm1 = equation.isen_coef-1
gp1 = equation.isen_coef+1
chi = ( u_r - shockSpeed ) / math.sqrt(equation.isen_coef * p_r / rho_r )
rho_l = rho_r * ( (gp1*chi*chi) / (gm1*chi*chi+2) )
u_l = shockSpeed + ( u_r - shockSpeed ) * (rho_r/rho_l)
p_l = p_r * ( (2*equation.isen_coef*chi*chi-gm1) / gp1 )
mach_l = u_l/math.sqrt( equation.isen_coef * p_l / rho_l )
function rho(x,y,z)
if ( y < channel_length/3.0 ) then
return rho_l
else
return rho_r
end
end
function p(x,y,z)
if ( y < channel_length/3.0 ) then
return p_l
else
return p_r
end
end
function u(x,y,z)
if ( y < channel_length/3.0 ) then
return u_l
else
return u_r
end
end
projection = {
kind = 'fpt',
factor = 2.0,
blocksize = 32
}
initial_condition = {
density = rho,
pressure = p,
velocityX = 0.0,
velocityY = u
}
-- Scheme definitions --
filter_order = 14
scheme = {
-- the spatial discretization scheme
spatial = {
name = 'modg_2d',
m = 4
},
---- the stabilzation of the scheme
stabilization = {
{
name = 'spectral_viscosity',
alpha = 36,
order = filter_order
},
{
name = 'covolume',
alpha = 36,
order = filter_order,
beta = 1.0
}
},
-- temporal discretization
temporal = {
name = 'explicitRungeKuttaTaylor',
steps = 4,
control = {
name = 'cfl',
cfl = 0.3
}
}
}
-- Boundary conditions
boundary_condition = {
{
label = 'inlet',
density = rho_l,
v_norm = u_l,
v_tan = 0.0,
pressure = p_l
},
{
label = 'outlet',
kind = 'outflow',
pressure = p_r
},
{
label = 'bottom',
kind = 'slipwall'
},
{
label = 'top',
kind = 'slipwall'
},
{
label = 'south',
kind = 'slipwall'
},
{
label = 'north',
kind = 'slipwall'
}
}
if (mach_l > 1) then
boundary_condition[1].kind = 'supersonic_inflow_normal'
else
boundary_condition[1].kind = 'inflow_normal'
end
-- Tracking
tracking = {
label = 'probe_density_Q4_covolume_rktaylor_y',
folder = '',
variable = {'density'},
shape = {
kind = 'canoND',
object= {
origin = { epsx, (channel_length/2.0) + epsx, epsx }
}
},
time_control = {
min = 0,
max = sim_control.time_control.max,
interval = sim_control.time_control.max/20.0
},
output = { format = 'ascii', ndofs = 1 }
}
Features used
Projection: fpt, Oversampling 2
Polynomial representation: Q
Filtering: covolume, spectral
Timestepping: explicitRungeKuttaTaylor, 4 steps
Boundary conditions: slipwall
, inflow_normal
, outflow