This a validation testcase for Euler 2D. It simulates a shocktube, with different, constant states left and right in the shocktube, resulting in a discontinuity in the middle. Thus, a Riemann problem is to be simulated, for which we now the solution and can compare the result.
The configuration is provided in the ateles.lua
file:
-- This setup simulates a 1D Riemann problem in X direction in the 2D Euler
-- equations.
simulation_name = 'toro1_x_euler_modg_2d'
-- global simulation options
sim_control = {
time_control = {
min = 0,
max = 0.025
}
}
-- Mesh definitions --
channel_length = 1.0
mesh = {
predefined = 'line_bounded',
origin = {0, 0, 0},
length = channel_length,
element_count = 100
}
-- Equation definitions --
equation = {
name = 'euler_2d',
isen_coef = 1.4,
r = 296.0,
material = {
characteristic = 0,
relax_velocity = {0, 0},
relax_temperature = 0
}
}
-- (cv) heat capacity and (r) ideal gas constant
equation["cv"] = equation["r"] / (equation["isen_coef"] - 1.0)
-- Tracking
tracking = {
label = 'probe_density_Q4_toro_x',
folder = '',
variable = {'density'},
shape = {
kind = 'canoND',
object= {
origin = {
(channel_length/2.0) + 0.0001,
0.0001,
0.0001
}
}
},
time_control = {
min = 0,
max = sim_control.time_control.max,
interval = sim_control.time_control.max/20.0
},
output = { format = 'ascii', ndofs = 1 }
}
-- The initial conditions for the Riemann problem
-- ... left state
rho_l = 1.0
u_l = 0.0
p_l = 1.0
-- ... right state
rho_r = 0.125
u_r = 0.0
p_r = 0.1
function rho(x,y,z)
if ( x < channel_length/2.0 ) then
return rho_l
else
return rho_r
end
end
function p(x,y,z)
if ( x < channel_length/2.0 ) then
return p_l
else
return p_r
end
end
function u(x,y,z)
if ( x < channel_length/2.0 ) then
return u_l
else
return u_r
end
end
function velY(x,y,z)
return 0.0
end
projection = {
kind = 'fpt',
factor = 1.0,
blocksize = 32
}
initial_condition = {
density = rho,
pressure = p,
velocityX = u,
velocityY = 0
}
-- Scheme definitions --
scheme = {
-- the spatial discretization scheme
spatial = {
name = 'modg_2d',
m = 3
},
-- the temporal discretization scheme
temporal = {
name = 'explicitRungeKutta',
steps = 4,
control = {
name = 'cfl',
cfl = 0.6
}
}
}
-- Boundary conditions
boundary_condition = {
{
label = 'west',
kind = 'inflow_normal',
density = rho_l,
v_norm = u_l,
v_tan = 0.0
},
{
label = 'east',
kind = 'outflow',
pressure = p_r
}
}
Features used
Projection: fpt
Polynomial representation: Q
Filtering: --
Timestepping: explicitRungeKutta, 4 steps
Boundary conditions: inflow_normal
, outflow
Others: