This setup illustrates the use of modal min/max estimation in computation of timestep limitation for 3D Euler equations. It simulates a pressure pulse in a fully periodic domain.
The ateles.lua
file contains the configuration of the setup:
-- Setup with modal estimation for adaptive timestep limit in 3D Euler
-- This example shows the use of a modal estimation for the adaptive timestep.
-- Usually, modal to nodal transformation is done to find velocities for the
-- timestep limitation due to the CFL condition.
-- With the modal estimation this operation can be avoided by estimating the
-- maximal values in each element from summing the absolute values of modes.
-- This leads to very pessimistic estimations and can result in tiny timesteps!
-- --------------- General options --------------- --
simulation_name = 'modalest_3d'
sim_control = {
time_control = {
min = 0,
max = {iter=20},
interval = {iter=1}
}
}
p_ref = 101325 -- Reference pressure in Pascal
T_ref = 288.15 -- Reference temperature in Kelvin
rho_ref = 1.225 -- Reference density in kg/m^3
c_ref = 340 -- Reference speed of sound
-- --------------- General options --------------- --
-- ----------------------------------------------- --
-- ------------------- --
-- ------ Mesh ------- --
mesh = {
predefined = 'cube',
origin = { 0, 0, 0 },
length = 1,
refinementLevel = 2
}
-- ------ Mesh ------- --
-- ------------------- --
-- --------------------------------------------------------- --
-- ----------------------- Equation ------------------------ --
equation = {
name = 'euler',
isen_coef = c_ref^2*rho_ref/p_ref,
r = p_ref/(rho_ref*T_ref),
material = {
characteristic = 0,
relax_velocity = {0, 0, 0},
relax_temperature = 1
}
}
-- (cv) heat capacity and (r) ideal gas constant
equation["cv"] = equation["r"] / (equation["isen_coef"] - 1.0)
-- ----------------------- Equation ------------------------ --
-- --------------------------------------------------------- --
-- ----------------------- Scheme -------------------------- --
scheme = {
-- the spatial discretization scheme
spatial = {
name = 'modg',
m = 19
},
-- the temporal discretization scheme
temporal = {
name = 'explicitRungeKutta',
steps = 4,
-- how to control the timestep
control = {
name = 'cfl',
use_modal_estimate = true,
cfl = 0.9
}
}
}
projection = {
kind = 'l2p',
factor = 1.0
}
-- ----------------------- Scheme -------------------------- --
-- --------------------------------------------------------- --
-- ------ Initial conditions ------- --
initial_condition = {
density = {
predefined = 'gausspulse',
center = { 0.5, 0.5, 0.5 },
halfwidth = 0.1,
amplitude = 0.1,
background = 1
},
pressure = {
predefined = 'gausspulse',
center = { 0.5, 0.5, 0.5 },
halfwidth = 0.1,
amplitude = 0.1,
background = 1
},
velocityX = 0.0,
velocityY = 0.0,
velocityZ = 0.0
}
-- ------ Initial conditions ------- --
-- --------------------------------- --
-- -------------------- Tracking ---------------------- --
tracking = {
label = 'point_series',
folder = '',
variable = { 'density', 'momentum', 'energy' },
shape = {
kind = 'canoND',
object= { origin = { 0.7, 0.7, 0.7 } }
},
time_control = {
min = 0,
max = sim_control.time_control.max,
interval = {iter=1}
},
output = { format = 'ascii', ndofs = 1 }
}
-- ---------------------------------------------------- --
Projection: l2p
Polynomial representation: Q
Filtering: -
Timestepping: explicitRungeKutta, 4 steps
Boundary conditions: -
Others: use_modal_estimate