Setup of a travelling planar shock in 3D Euler equations, stabilized by spectral
and covolume filtering.
The configuration is found in ateles.lua
:
-- Simulation of a planar shock in 3D Euler equations
-- through a domain that is periodic in all directions.
-- global simulation options
simulation_name = 'euler_3d'
sim_control = {
time_control = {
min = 0,
max = { iter = 5 }
}
}
check = { interval = 1 }
-- Mesh definitions --
mesh = 'mesh/'
-- Equation definitions --
equation = {
name = 'euler',
isen_coef = 1.4,
r = 296.0,
material = {
characteristic = 0,
relax_velocity = {0, 0, 0},
relax_temperature = 0
}
}
-- (cv) heat capacity and (r) ideal gas constant
equation["cv"] = equation["r"] / (equation["isen_coef"] - 1.0)
-- The state right of the shock
rho_r = 1.0
u_r = 0.0
p_r = 1.0
mach_r = u_r/math.sqrt( equation.isen_coef * p_r / rho_r )
-- Shock properties
shockMach = 2.0
shockXCoord = -1.2
shockSpeed = shockMach * math.sqrt(equation.isen_coef * p_r / rho_r )
-- The state left of the shock (evaluated by Rankine-Huginoit condition)
gp1 = equation.isen_coef + 1
gm1 = equation.isen_coef - 1
chi = ( u_r - shockSpeed ) / math.sqrt(equation.isen_coef * p_r / rho_r )
rho_l = rho_r * ( (gp1*chi*chi) / (gm1*chi*chi+2) )
u_l = shockSpeed + ( u_r - shockSpeed ) * (rho_r/rho_l)
p_l = p_r * ( (2*equation.isen_coef*chi*chi-gm1) / gp1 )
mach_l = u_l/math.sqrt( equation.isen_coef * p_l / rho_l )
function rho(x,y,z)
if ( z < 1/3.0 ) then
return rho_l
else
return rho_r
end
end
function p(x,y,z)
if ( z < 1/3.0 ) then
return p_l
else
return p_r
end
end
function u(x,y,z)
if ( z < 1/3.0 ) then
return u_l
else
return u_r
end
end
projection = {
kind = 'l2p',
factor = 2.0
}
initial_condition = {
density = rho,
pressure = p,
velocityX = 0.0,
velocityY = 0.0,
velocityZ = u
}
-- Scheme definitions --
filter_order = 14
scheme = {
-- the spatial discretization scheme
spatial = {
name = 'modg',
m = 4
},
---- the stabilzation of the scheme
stabilization = {
{
name = 'spectral_viscosity',
alpha = 36,
order = filter_order
},
{
name = 'covolume',
alpha = 36,
order = filter_order,
beta = 1.0
}
},
-- temporal discretization
temporal = {
--name = 'explicitRungeKutta',
--steps = 4,
name = 'explicitSSPRungeKutta',
steps = 2,
control = {
name = 'cfl',
--dt = 1e-5
cfl = 0.3
}
}
}
epsx = 1.e-3
tracking = {
label = 'probe_density_Q4_periodic_covolume_z',
folder = '',
variable = {'density'},
shape = {
kind = 'canoND',
object= {
origin = { (1/2) + epsx, (1/2) + epsx, (1/2) + epsx }
}
},
time_control = {
min = 0,
max = sim_control.time_control.max,
interval = sim_control.time_control.max
},
output = { format = 'ascii', ndofs = 1 }
}
Features used
Projection: l2p, Oversampling 2
Polynomial representation: Q
Filtering: spectral, covolume
Timestepping: explicitSSPRungeKutta, 2 steps
Boundary conditions: --