! Copyright (c) 2011-2014 Simon Zimny ! Copyright (c) 2011-2013 Manuel Hasert ! Copyright (c) 2011-2012 Jens Zudrop ! Copyright (c) 2011-2016 Kannan Masilamani ! Copyright (c) 2011-2012 Khaled Ibrahim ! Copyright (c) 2011-2019, 2021 Harald Klimach ! Copyright (c) 2012, 2014-2016 Jiaxing Qi ! Copyright (c) 2012-2014 Kartik Jain ! Copyright (c) 2012-2013 Melven Zoellner ! Copyright (c) 2014 Julia Moos ! Copyright (c) 2014, 2016 Tobias Schneider ! Copyright (c) 2016-2017 Peter Vitt ! Copyright (c) 2017 Daniel PetrĂ³ ! Copyright (c) 2017 Raphael Haupt ! Copyright (c) 2019 Neda Ebrahimi Pour ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ****************************************************************************** ! !> author: Simon Zimny, Harald Klimach !! This module provides the main IO facilities to read and write large amounts !! of data during the simulation. !! !! Especially, it enables the dumping of the simulation status !! (e.g. the state vector) to disk and reading the information later on to !! restart the simulation at a certain point of time. !! Additionally, information like solver, version, number of elements, etc. !! are stored in a seperate header file. !! !! The general procedure is as follows: !! !! - read the configuration from the lua file with tem_load_restart !! - initialize the read/write restart with tem_init_restart !! - read restart !! - write restart !! !! Find more information about usage of restart in the section '[restart_usage]' !! !! The Restart / Harvester Format !! --- !! !! @todo Add an extensive description of the restart format here !! !! The Restart Usage !! --- !! !! To use the restart functionality the user has to define the io buffersize !! !!```lua !! -- IO buffer size in MB (default = 8) !! io_buffer_size = 1 !!``` !! !! and the restart settings in the lua configuration file. !! !!```lua !! -- Restart settings !! restart = { read = 'restart/gaussian_lastHeader.lua', !! -- file to restart from !! write = 'restart/', !! -- prefix to write the files to !! time_control = { min = 0, max = 10, interval = 10, !! align_trigger = false, !! } !! -- timing definitions (either iterations or simulation time) !! } !!``` !! Another option to read restart is from initial conditions. !! The user then has to define restart data to be read into a variable in this !! way: !!```lua !! initial_condition = { file = 'restart/channel_lastHeader.lua', !! depend = { !! variable = { {'pdf', 19} }, !! usescheme = 'mini-channel' !! } !! } !!``` !! !! If only the write option shall be used the identifier read has to be removed !! and vice versa. module tem_restart_module ! include treelm modules use mpi use env_module, only: LabelLen, PathLen, rk_mpi, long_k, rk, & & tem_create_endianSuffix, pathSep, & & io_buffer_size, globalMaxLevels, & & long_k_mpi, newUnit use treelmesh_module, only: treelmesh_type, load_tem, dump_treelmesh use tem_global_module, only: tem_global_type, tem_mesh_out use tem_aux_module, only: tem_abort, tem_open_distconf, & & tem_open, check_mpi_error use tem_comm_env_module, only: tem_comm_env_type use tem_solveHead_module, only: tem_solveHead_type, tem_solverTag use tem_timeControl_module, only: tem_timeControl_type, & & tem_timeControl_load, & & tem_timeControl_align_trigger, & & tem_timeControl_dump use tem_time_module, only: tem_time_sim_stamp, tem_time_type, & & tem_time_out, tem_time_load, & & tem_time_set_clock, tem_time_dump, & & tem_time_reset use tem_tools_module, only: tem_horizontalSpacer use tem_varSys_module, only: tem_varSys_type, tem_varSys_out, & & tem_varSys_load, tem_varSys_dump, & & tem_get_element_chunk use tem_varMap_module, only: tem_varMap_type use tem_subTree_type_module, only: tem_subTree_type, tem_dump_subTree use tem_logging_module, only: logUnit use tem_debug_module, only: dbgUnit ! use tem_transient_reduction_module, & ! & only: tem_transient_reduction_open, & ! & tem_transient_reduction_apply, & ! & tem_transient_reduction_close, & ! & tem_transient_reduction_type ! include aotus modules use aotus_module, only: flu_State, aot_get_val, close_config use aot_out_module, only: aot_out_type, aot_out_val, & & aot_out_open, aot_out_close, & & aot_out_open_table, aot_out_close_table use aot_table_module, only: aot_table_open, aot_table_close implicit none private public :: tem_restart_type public :: tem_restartControl_type public :: tem_restartHeader_type public :: tem_load_restart public :: tem_init_restart public :: tem_init_restart_alloc public :: tem_init_restart_create_types public :: tem_restart_finalize public :: tem_restart_writeData public :: tem_restart_writeHeader public :: tem_restart_readData public :: tem_restart_readData_single public :: tem_restart_openRead public :: tem_restart_openRead_single public :: tem_restart_closeRead public :: tem_restart_closeRead_single public :: tem_restart_openWrite public :: tem_restart_closeWrite public :: tem_restart_getTotalChunks public :: tem_restart_dump_data !> Control the behavior of the restart, like at which point in time etc. type tem_restartControl_type !> Do a normal initialization if the read restart file is not found? logical :: init_on_missing !> is the restart read active? logical :: readRestart !> is the restart write active? logical :: writeRestart !> read the restart file from following file character(len=PathLen) :: readFileName !> write the restart file into a file with the following prefix character(len=PathLen) :: writePrefix !> control about when to do the restart type(tem_timeControl_type) :: timeControl end type tem_restartControl_type !> Define quantities like the prefix, the mesh and the timestamp type tem_restartHeader_type !> a unique tag for the solver including version character(len=LabelLen) :: solverTag = 'unknown' !> solver creating the input data (Ateles, Musubi) character(len=LabelLen) :: solverKind !> the simulation name character(len=LabelLen) :: simName = '' !> the solver config file name character(len=pathLen) :: solverConfigFile = '' !> name of the binary files (this variable is set for every timestamp !! differently, used for read and write) character(len=PathLen) :: binName !> prefix for the binary files (includes directory and file prefix) character(len=PathLen) :: binPrefix !> prefix for the header files (includes directory and file prefix) character(len=PathLen) :: headerPrefix !> the current time generated from tem_time_module character(len=16) :: timestamp !> mesh directory ! character(len=pathLen) :: meshDir !> Number of elements as read from the restart header integer :: nElems !> variable system dumped in restart header type(tem_varSys_type) :: varSys end type tem_restartHeader_type type tem_file_layout_type !> Number of degrees of freedom for each of the scalars entries in !! the varibale system in the file. integer :: nDofs = 1 !> Number of local chunks required to fit complete data in. !! Set in routine: tem_restart_getTotalChunks integer :: nChunks !> Globally maximal number of chunks required. !! Set in routine: tem_restart_getTotalChunks integer :: maxnChunks !> Number of elements that fit into the buffer. !! Set in routine: tem_restart_getTotalChunks integer :: chunkSize !> Handle for the MPI type to describe the view for IO in binary IO integer :: ftype !> Handle for the MPI type describing the vector of data in each element integer :: vectype !> start of view for MPI_SET_VIEW integer(kind=MPI_OFFSET_KIND) :: displacement end type !> The restart type defining everything related to the !! disk input/output type tem_restart_type !> communicator for the processes participating in this restart (might be !! only a subset of the global communicator) type(tem_comm_env_type) :: comm !> actual number of elements in the current chunk (= chunkSize or ! tree%nElems-(nChunks-1)*ChunkSize) integer :: nChunkElems !> Description of the data layout to use when reading a file. type(tem_file_layout_type) :: read_file !> Description of the data layout to use when writing a file. type(tem_file_layout_type) :: write_file !> Control the behavior of the restart, like at which point in time etc. type(tem_restartControl_type) :: controller !> Define quantities like the prefix, the mesh and the timestamp type(tem_restartHeader_type) :: header !> unit integer to write binary data to integer :: binaryUnit !> name and position of variables in global variable system type(tem_varMap_type) :: varMap !!> number of scalars of variables in varPos integer :: nScalars !> scratch file unit contains solver specific info in dump in restart header !! This file should contain the information in form of a Lua script. integer :: solSpec_unit = -1 !> The time when the last restart file was written. type(tem_time_type) :: lastWritten end type tem_restart_type contains ! ************************************************************************ ! !> Read all necessary information for the restart from the lua config file. !! !! Include this routine into your general configuration load routine. !! The configuration looks as follows !!```lua !! restart = { read = 'restart/lastHeader.lua', -- Which file to restart from, !! -- if any !! write = 'restart/', -- Where to write the restart files to, !! -- if any !! time = { min = 0, max = 10, interval = 10} -- when to output !! } !!``` !! Here, the restart is loaded from `restart/lastHeader.lua` and reads in the !! related data and configuration. !! Restart files are written out in `restart/` folder !! subroutine tem_load_restart( me, conf, tree, timing, globProc, parent_table, & & key ) ! -------------------------------------------------------------------- ! !> restart type to be filled type(tem_restart_type), intent(inout) :: me !> lua configuration file type(flu_state) :: conf !> mesh, provided in treelm format type(treelmesh_type), intent(inout) :: tree !> the timing for re-setting the times type(tem_time_type), intent(inout) :: timing !> Global process communicator env type( tem_comm_env_type ), intent(in) :: globProc !> optional parent handle integer, optional, intent(in) :: parent_table !> optional key for table character(len=*), optional, intent(in) :: key ! -------------------------------------------------------------------- ! character(len=32) :: localKey logical :: readexists integer :: restart_table integer :: iError ! -------------------------------------------------------------------- ! if (present(key)) then ! The table to look for is not named restart, look for this different ! key. localKey = key else ! Use the default name restart for the table. localKey = 'restart' ! Set current folder as default prefix for writing me%controller%writePrefix = '.'//pathSep end if me%controller%readRestart = .false. me%controller%writeRestart = .false. ! Attempt to open the restart table (within another table, if a parent is ! given). call aot_table_open( L = conf, & & thandle = restart_table, & & parent = parent_table, & & key = trim(localKey) ) ! Initialize the last written time to 0. call tem_time_reset(me%lastWritten) me%lastWritten%iter = -1 ! If the restart table is present, the parameters are loaded. ! In case of dynamic load balancing, parameters are loaded ! in a different manner i.e. timings etc. are read from balance table if (restart_table .ne. 0 ) then call tem_horizontalSpacer(fUnit = logUnit(1)) write(logUnit(1),*) 'Loading restart ...' ! Successfully opened the table. ! First we get all the informations of the read table. ! Reading the filename to read the restart data from. call aot_get_val( L = conf, & & thandle = restart_table, & & key = 'read', & & val = me%controller%readFileName, & & ErrCode = iError ) if (iError == 0) then call aot_get_val( L = conf, & & thandle = restart_table, & & key = 'init_on_missing', & & val = me%controller%init_on_missing, & & default = .false., & & ErrCode = iError ) ! Successfully obtained a filename to restart from, now go on and read ! the data from its header if it exists. write(logUnit(1),*) "*****************************" write(logUnit(1),*) "Restart read parameters: " write(logUnit(1),*) " filename : "//trim(me%controller%readFileName) if (globProc%rank == 0) then inquire(file = trim(me%controller%readFileName), exist = readexists) end if call MPI_Bcast(readexists, 1, MPI_LOGICAL, 0, globProc%comm, iError) ! Set the restart flag if the restart file exists me%controller%readRestart = readexists if (readexists) then call tem_restart_readHeader( me = me, & & timing = timing, & & globProc = globProc, & & tree = tree ) if ( tree%global%nElems /= me%header%nElems ) then write(logUnit(0),*) 'Number of elements in restart header different ' & & // 'from mesh' write(logUnit(0),*) 'Stopping...' call tem_abort() end if call tem_time_set_clock(me = timing) me%lastWritten = timing else write(logUnit(1),*) '' write(logUnit(1),*) '!File to restart from does NOT exist!' write(logUnit(1),*) '' if (me%controller%init_on_missing) then write(logUnit(1),*) 'NOTE: performing initialization without' write(logUnit(1),*) ' reading data from restart as requested' write(logUnit(1),*) ' via the init_on_missing flag.' write(logUnit(1),*) '' else write(logUnit(1),*) ' Do not know how proceed, aborting now...' write(logUnit(1),*) ' If you want to perform the initialization' write(logUnit(1),*) ' when the restart file is missing, set' write(logUnit(1),*) ' the init_on_missing option in the restart' write(logUnit(1),*) ' table to true.' call tem_abort() end if end if write(logUnit(1),*) "*****************************" write(logUnit(1),*) '' end if ! If reading restart ! Now we get all the information about writing restart data. call aot_get_val( L = conf, & & thandle = restart_table, & & key = 'write', & & val = me%controller%writePrefix, & & ErrCode = iError ) me%controller%writeRestart = (iError == 0) if (me%controller%writeRestart) then ! Read the time intervals for restart output from the Lua config. call tem_timeControl_load( me = me%controller%timeControl, & & conf = conf, & & parent = restart_table ) if (me%controller%readRestart) then call tem_timeControl_align_trigger( & & me = me%controller%timeControl, & & conf = conf, & & now = timing, & & parent = restart_table ) end if write(logUnit(1),*) "*****************************" write(logUnit(1),*) "Restart write parameters: " write(logUnit(1),*) " prefix : "//trim(me%controller%writePrefix) call tem_timeControl_dump(me%controller%timeControl, logUnit(2)) write(logUnit(1),*) "*****************************" write(logUnit(1),*) '' end if call tem_horizontalSpacer(fUnit = logUnit(1)) end if ! If restart table present call aot_table_close( L=conf, thandle=restart_table ) end subroutine tem_load_restart ! ************************************************************************ ! ! ************************************************************************ ! !> Initialize the global restart data type and prepare for the restart output !! !! This routine is called as well for read as for write restart tasks !! It must be called after [[tem_load_restart]] and before the first call to !! any of tem_restart_* !! This routine is called only when restart is read from the restart table. !! If restart is performed from the initial condition table, then !! different routines (which are basically wrapped around by this one) are !! invoked !! subroutine tem_init_restart( me, solver, varMap, tree, subTree, & & nDofs_write, chunkSize, solSpec_unit ) ! -------------------------------------------------------------------- ! !> The restart object to initialize. type(tem_restart_type), intent(inout) :: me !> Details about the solver. type(tem_solveHead_type), optional, intent(in) :: solver !> Description of each variable system. !! This is ignored, if the data is provided by reading !! a restart. ! type(tem_varSys_type), intent(in) :: varSys !> Contains position of variables to dump in restart file in global !! variable system for a scheme type(tem_varMap_type), intent(in) :: varMap !> Mesh, provided in treelm format type(treelmesh_type), intent(in) :: tree !> optional subTree of the given tree type(tem_subTree_type), optional, intent(in) :: subTree !> number of degrees of freedom for each variable of the equation system integer, optional, intent(in) :: nDofs_write !> use predefined chunkSize integer, optional, intent(in) :: chunkSize !> Solver specific unit for restart header integer, optional, intent(in) :: solSpec_unit ! -------------------------------------------------------------------- ! integer :: comm, rank, comm_size, locElems integer(kind=long_k) :: globElems, elemOff integer :: read_stat logical :: nUnitOpened character(len=320) :: solve_line ! -------------------------------------------------------------------- ! ! set information about variables to be dumped in restart format. ! Do this irrespective of read or write restart me%varMap = varMap ! Get the total number of chunks necessary to write data-set through IO ! buffer to disk. if ( present( subTree ) ) then comm = subTree%global%comm rank = subTree%global%myPart comm_size = subTree%global%nParts globElems = subTree%global%nElems elemOff = subTree%elemOffset locElems = int(subTree%nElems) else comm = tree%global%comm rank = tree%global%myPart comm_size = tree%global%nParts globElems = tree%global%nElems elemOff = tree%elemOffset locElems = int(tree%nElems) end if ! Invoke the routine to allocate various variables call tem_init_restart_alloc( me = me, & & comm = comm, & & rank = rank, & & comm_size = comm_size, & & solver = solver, & & nDofs_write = nDofs_write ) ! Loop over all the systems to create MPI types for reading restart ! Invoke the routine which creates MPI Types call tem_init_restart_create_types( me = me, & & elemOff = elemOff, & & locElems = locElems ) call tem_restart_getTotalChunks( restart = me, & & nElems = locElems, & & comm = comm, & & chunkSize = chunkSize ) ! In root of this restart type, ! if write restart is active and solSpec_unit is present ! and opened then copy the content in solSpec_unit to internal ! restart scratch unit me%solSpec_unit = -1 if (me%comm%rank == 0 .and. me%controller%writeRestart) then if (present(solSpec_unit)) then if (solSpec_unit>0) then write(dbgUnit(10),*) 'Writing solver specific info in restart:' inquire(unit=solSpec_unit, opened=nUnitOpened) if (nUnitOpened) then me%solSpec_unit = newunit() open(unit=me%solSpec_unit, status='scratch') rewind(solSpec_unit) do read(solSpec_unit,'(a)', iostat=read_stat) solve_line if (read_stat /= 0) EXIT write(dbgUnit(10),*) trim(solve_line) write(me%solSpec_unit,'(a)') trim(solve_line) end do end if !unitOpened end if !solSpecUnit>0 end if !present solSpecUnit end if !root process and active writeRestart end subroutine tem_init_restart ! ************************************************************************ ! ! ************************************************************************ ! !> author: Kartik Jain !! This subroutine initializes the restart in case of reading initial !! conditions from restart file. The dependent scheme id is passed as input. !! subroutine tem_init_restart_alloc( me, comm, rank, comm_size, solver, nDofs_write ) ! -------------------------------------------------------------------- ! type(tem_restart_type), intent(inout) :: me integer, intent(in) :: comm, rank, comm_size type(tem_solveHead_type), optional, intent(in) :: solver integer, optional, intent(in) :: nDofs_write ! Inherit communicator information from the tree (or subTree) we are to ! act on in this restart object: me%comm%comm = comm me%comm%rank = rank me%comm%comm_size = comm_size me%comm%root = 0 ! if provided reset the simulation name and solver tag if ( present(solver) ) then me%header%simName = trim(solver%simName) me%header%solverTag = tem_solverTag(solver) me%header%solverConfigFile = solver%configFile end if if ( present(nDofs_write) ) then me%write_file%nDofs = nDofs_write else me%write_file%nDofs = 1 end if ! Set the prefix for the header file. me%header%headerPrefix = trim(me%controller%writePrefix) & & // trim(me%header%simName) ! Set the prefix for all binary files. me%header%binPrefix = trim(me%controller%writePrefix) & & // trim(me%header%simName) ! Reset all the values of the chunk information me%nChunkElems = 0 me%write_file%chunkSize = 0 me%read_file%chunkSize = 0 me%write_file%nChunks = 0 me%read_file%nChunks = 0 me%write_file%maxnChunks = 0 me%read_file%maxnChunks = 0 end subroutine tem_init_restart_alloc ! ************************************************************************ ! ! ************************************************************************ ! !> This subroutine creates MPI types for reading the restart. subroutine tem_init_restart_create_types( me, elemOff, locElems) ! -------------------------------------------------------------------- ! type(tem_restart_type), intent(inout) :: me integer(kind=long_k),intent(in) :: elemOff integer,intent(in) :: locElems ! -------------------------------------------------------------------- ! ! local variables integer :: iError integer :: typesize ! -------------------------------------------------------------------- ! if ( int(me%varMap%nScalars, MPI_OFFSET_KIND) & & * int(me%write_file%nDofs, MPI_OFFSET_KIND) & & * int(locelems, MPI_OFFSET_KIND) * 8_MPI_OFFSET_KIND & & >= 2147483648_MPI_OFFSET_KIND ) then write(logunit(1),*) 'Error: local partition greater 2GB!' write(logunit(1),*) 'Most MPI implementations do not support this.' write(logunit(1),*) 'I will abort now, as this will likely result in' write(logunit(1),*) 'an error later on anyway.' write(logunit(1),*) write(logunit(1),*) 'Please make sure, to use a sufficient number of' write(logunit(1),*) 'processes to reduce the size of local partitions' write(logunit(1),*) 'to two GB.' write(logunit(1),*) 'Which would be less than ', & & int( real(2147483648_MPI_OFFSET_KIND, kind=rk) & & / real( me%varMap%nScalars*me%write_file%nDofs & & * 8_MPI_OFFSET_KIND, kind=rk) ), & & ' elements for your element size.' call tem_abort() end if ! A contiguous type to describe the vector per element. ! MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR) call MPI_Type_contiguous( me%varMap%nScalars*me%write_file%nDofs, & & rk_mpi, & & me%write_file%vectype, & & iError ) call check_mpi_error( iError, & & 'create contiguous (write) vectype in init_restart' ) ! Commit the type for creation call MPI_Type_commit( me%write_file%vectype, iError ) call check_mpi_error( iError, 'commit (write) vectype in init_restart' ) ! Create a MPI Contiguous as ftype for file view call MPI_Type_contiguous( locElems, me%write_file%vectype, & & me%write_file%ftype, iError ) call check_mpi_error( iError, & & 'create contiguous (write) ftype in init_restart' ) ! commit the new contiguous type call MPI_Type_commit( me%write_file%ftype, iError ) call check_mpi_error( iError, 'commit ftype in init_restart') ! get size of element call MPI_TYPE_SIZE(me%write_file%vectype, typesize, iError ) call check_mpi_error(iError,'typesize in init_restart') ! set the start of view me%write_file%displacement= elemOff * typesize * 1_MPI_OFFSET_KIND if (me%read_file%nDofs /= me%write_file%nDofs) then if ( int(me%varMap%nScalars, MPI_OFFSET_KIND) & & * int(me%read_file%nDofs, MPI_OFFSET_KIND) & & * int(locelems, MPI_OFFSET_KIND) * 8_MPI_OFFSET_KIND & & >= 2147483648_MPI_OFFSET_KIND ) then write(logunit(1),*) 'Error: local partition from restart greater 2GB!' write(logunit(1),*) 'Most MPI implementations do not support this.' write(logunit(1),*) 'I will abort now, as this will likely result in' write(logunit(1),*) 'an error later on anyway.' write(logunit(1),*) write(logunit(1),*) 'Please make sure, to use a sufficient number of' write(logunit(1),*) 'processes to reduce the size of local partitions' write(logunit(1),*) 'to two GB.' write(logunit(1),*) 'Which would be less than ', & & int( real(2147483648_MPI_OFFSET_KIND, kind=rk) & & / real( me%varMap%nScalars*me%read_file%nDofs & & * 8_MPI_OFFSET_KIND, kind=rk) ), & & ' elements for your elements in the restart file.' call tem_abort() end if ! MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR) call MPI_Type_contiguous( me%varMap%nScalars*me%read_file%nDofs, & & rk_mpi, & & me%read_file%vectype, & & iError ) call check_mpi_error( iError, & & 'create contiguous (read) vectype in init_restart' ) ! Commit the type for creation call MPI_Type_commit( me%read_file%vectype, iError ) call check_mpi_error( iError, 'commit (read) vectype in init_restart') ! Create a MPI Contiguous as ftype for file view call MPI_Type_contiguous( locElems, me%read_file%vectype, & & me%read_file%ftype, iError ) call check_mpi_error( iError, & & 'create contiguous (read) ftype in init_restart' ) ! commit the new contiguous type call MPI_Type_commit( me%read_file%ftype, iError ) call check_mpi_error( iError, 'commit (read) ftype in init_restart' ) ! get size of element call MPI_TYPE_SIZE(me%read_file%vectype, typesize, iError ) call check_mpi_error(iError,'typesize in init_restart') ! set the start of view me%read_file%displacement = elemOff * typesize * 1_MPI_OFFSET_KIND else me%read_file%vectype = me%write_file%vectype me%read_file%ftype = me%write_file%ftype me%read_file%displacement=me%write_file%displacement end if end subroutine tem_init_restart_create_types ! ************************************************************************ ! ! ************************************************************************ ! !> This subroutine evaluated get_element and dump each chunk !! !! This routine is used in tracking to dump in data in harvester format !! for single variable system subroutine tem_restart_dump_data( restart, varSys, tree, time, subTree ) ! & transientReduce ) ! -------------------------------------------------------------------- ! !> The restart object describing how and what to output. type(tem_restart_type), intent(inout) :: restart !> Description of the available variable system to get the given varnames !! from. type(tem_varSys_type), intent(in) :: varsys !> Mesh to write the data on. type(treelmesh_type), intent(in) :: tree !> Point in time to use for this data. !! !! Can be important for space-time function evaluations. type(tem_time_type), intent(in) :: time !> Optional restriction of the elements to output. type(tem_subtree_type), optional, intent(in) :: subtree !> transient reducution ! type(tem_transient_reduction_type), intent(inout) :: transientReduce(:) ! -------------------------------------------------------------------- ! integer :: nVars, nElems, nScalars, elemOff, nChunkElems integer :: iElem, iChunk integer :: buf_start, buf_end real(kind=rk), allocatable :: res(:) integer, allocatable :: elemPos(:) integer :: ioStatus( mpi_status_size ) integer :: iError ! -------------------------------------------------------------------- ! allocate(res(io_buffer_size)) ! Number of variables to dump nVars = restart%varMap%varPos%nVals ! Number of scalars in current output nScalars = restart%varMap%nScalars if (present(subTree)) then nElems = subTree%nElems else nElems = tree%nElems end if ! open transient reduction ! call tem_transient_reduction_open( me = transientReduce, & ! & time = time%sim ) ! allocate elemPos to size of chunkSize allocate(elemPos(restart%write_file%chunkSize)) ! Process all chunks to derive the quantities defined in the tracking object do iChunk = 1, restart%write_file%nChunks ! Number of elements read so far in previous chunks. elemOff = ((iChunk-1)*restart%write_file%chunkSize) ! number of elements written to THIS chunk nChunkElems = min(restart%write_file%chunkSize, nElems-elemOff) restart%nChunkElems = nChunkElems ! Compute the element lower and upper bound for the current chunk buf_start = elemOff + 1 buf_end = elemOff + nChunkElems if (present(subTree)) then elemPos(1:nChunkElems) = subTree%map2Global(buf_start:buf_end) else elemPos(1:nChunkElems) = (/ (iElem, iElem=buf_start, buf_end) /) end if ! evaluate all variables on current chunk call tem_get_element_chunk(varSys = varSys, & & varPos = restart%varMap%varPos & & %val(:nVars), & & elemPos = elemPos(1:nChunkElems), & & time = time, & & tree = tree, & & nElems = nChunkElems, & & nDofs = restart%write_file%nDofs, & & res = res ) ! perform transient reduction ! @todo KM: Check transientReduction when nDofs>1 ! call tem_transient_reduction_apply( me = transientReduce, & ! & chunk = res, & ! & offset = buf_start - 1, & ! & nChunkElems = nChunkElems, & ! & varSys = varSys, & ! & varPos = restart%varMap & ! & %varPos%val(:nVars) ) ! Now write the results into the file, using the view defined in ! [[tem_restart_openWrite]] ! arguments: ! file handle = binary unit opened in mpi_file_open ! initial address of buffer = first entry to dump within the chunk ! this is ad call mpi_file_write_all( restart%binaryUnit, res, & & restart%nChunkElems, & & restart%write_file%vectype, & & iostatus, iError ) call check_mpi_error( iError,'File write all in tem_restart_dump_data') end do !iChunk deallocate(elemPos) deallocate(res) ! close transient reduction ! call tem_transient_reduction_close( me = transientReduce ) end subroutine tem_restart_dump_data ! ************************************************************************ ! ! ************************************************************************ ! !> This subroutine dumps the given chunk to a given position in the restart !! file. !! subroutine tem_restart_writeData( restart, chunk ) ! -------------------------------------------------------------------- ! !> The restart object describing how and what to output. type(tem_restart_type), intent(inout) :: restart !> The data to output. !! It is organized as a serialized array of all scalar entries of all !! variable systems. Where first all the data for the nElems of the first !! variable system is provided. Within each variable system the data is !! organized elementwise. real(kind=rk), intent(in) :: chunk(:) ! -------------------------------------------------------------------- ! integer :: ioStatus( mpi_status_size ) integer :: iError ! -------------------------------------------------------------------- ! ! Now write the collected data (from the state array and prob. derived ! quantities) into the file, using the view defined in ! [[tem_restart_openWrite]] ! arguments: ! file handle = binary unit opened in mpi_file_open ! initial address of buffer = first entry to dump within the chunk ! this is ad call mpi_file_write_all( restart%binaryUnit, chunk, & & restart%nChunkElems, & & restart%write_file%vectype, & & iostatus, iError ) call check_mpi_error( iError,'File write all in tem_restart_writeData') end subroutine tem_restart_writeData ! ************************************************************************ ! ! ************************************************************************ ! !> Read data from a restart file. !! subroutine tem_restart_readData( restart, chunk ) ! -------------------------------------------------------------------- ! !> Restart description to read the data from type(tem_restart_type), intent(inout) :: restart !> Chunk of memory to put the read data into real(kind=rk), intent(out) :: chunk(:) ! -------------------------------------------------------------------- ! ! defining local variables integer :: nWords integer :: offset ! offset for the different var systems ! -------------------------------------------------------------------- ! ! @todo:KJ: For the new restart only the requested variable system should ! be read. offset = 1 call tem_restart_readData_single( restart, chunk, offset ) nWords = restart%varMap%nScalars * restart%nChunkElems & & * restart%read_file%nDofs offset = offset + nWords end subroutine tem_restart_readData ! ************************************************************************ ! ! ************************************************************************ ! !> subroutine which reads data from restart file corresponding to the input !! variable system !! subroutine tem_restart_readData_single( restart, chunk, offset ) ! -------------------------------------------------------------------- ! !> Restart object to read the data from type(tem_restart_type), intent(inout) :: restart !> Memory to chunk to put the data into real(kind=rk), intent(out) :: chunk(:) !> Offset of the chunk of data to get in the global data integer, intent(in) :: offset ! -------------------------------------------------------------------- ! ! defining local variables integer :: iostatus( MPI_STATUS_SIZE ) integer :: iError ! -------------------------------------------------------------------- ! ! MPI_FILE_READ_ALL(fh, buf, count, datatype, status) call mpi_file_read_all( restart%binaryUnit, chunk(offset), & & restart%nChunkElems, & & restart%read_file%vectype, & & iostatus, iError ) call check_mpi_error( iError,'File write all in tem_restart_readData_single') end subroutine tem_restart_readData_single ! ************************************************************************ ! ! ************************************************************************ ! !> open the restart dump file and write out the 'normal' restart header. !! subroutine tem_restart_openRead(me) ! -------------------------------------------------------------------- ! !> the restart information type(tem_restart_type) :: me write(logUnit(1),*)' Open read... ' ! read the restart header file ! prepare everything for the serialization of the data ! Invoke the routine to open single variable system from restart file call tem_restart_openRead_single(me) end subroutine tem_restart_openRead ! ************************************************************************ ! ! ************************************************************************ ! !> Open the restart dump file and set file view for the input variable system !! subroutine tem_restart_openRead_single(me) ! -------------------------------------------------------------------- ! !> the restart information type(tem_restart_type) :: me ! -------------------------------------------------------------------- ! ! variables to catch possible MPI I/O errors integer :: iError ! -------------------------------------------------------------------- ! ! open the binary file for MPI I/O call MPI_FILE_OPEN( me%comm%comm, & & trim( me%header%binName ), & & MPI_MODE_RDONLY, & & MPI_INFO_NULL, me%binaryUnit, & & iError ) call check_mpi_error( iError,'Open File in tem_restart_openRead_single') ! set the view of each process on the file opened above call MPI_FILE_SET_VIEW( me%binaryUnit, me%read_file%displacement, & & me%read_file%vectype, & & me%read_file%ftype, "native", & & MPI_INFO_NULL, iError ) call check_mpi_error( iError,'Set File view in tem_restart_openRead_single') end subroutine tem_restart_openRead_single ! ************************************************************************ ! ! ************************************************************************ ! !> This subroutine closes the restart dump file and writes the last header. subroutine tem_restart_closeRead( me ) ! -------------------------------------------------------------------- ! !> the restart information type(tem_restart_type) :: me ! -------------------------------------------------------------------- ! ! temporary buffer array for empty reads real(kind=rk) :: chunk(1) integer :: iChunk ! -------------------------------------------------------------------- ! ! If local process has performed less reads than global maximum required, ! we need to complete as many empty reads as the difference to maxnChunks ! to satisfy collective MPI-IO operations. me%nChunkElems = 0 do iChunk = me%read_file%nChunks+1, me%read_file%maxnChunks call tem_restart_readData(restart = me, chunk = chunk) end do ! Invoke the routine to close current variable system file call tem_restart_closeRead_single(me) write(logUnit(1),*)' Closed Read.' end subroutine tem_restart_closeRead ! ************************************************************************ ! !TG: merge together ! ************************************************************************ ! !> Close the restart dump file corresponding to a particular variable system !! subroutine tem_restart_closeRead_single(me) ! -------------------------------------------------------------------- ! !> the restart infotmation type(tem_restart_type) :: me ! -------------------------------------------------------------------- ! ! variables to catch possible MPI I/O errors integer :: iError ! -------------------------------------------------------------------- ! ! now close the binary file call MPI_File_close(me%binaryUnit, iError) call check_mpi_error( iError, 'File close in tem_restart_closeRead_single' ) end subroutine tem_restart_closeRead_single ! ************************************************************************ ! ! ************************************************************************ ! !> open the restart dump file and write out the 'normal' restart header as !! well as the mesh. !! subroutine tem_restart_openWrite( me, tree, timing, varSys, subTree, label, & & suffix ) ! -------------------------------------------------------------------- ! !> the restart infotmation type(tem_restart_type) :: me !> mesh, provided in treelm format type(treelmesh_type) :: tree !> current simulation time information type(tem_time_type),intent(in) :: timing !> the used var systeme type(tem_varSys_type), intent(in) :: varSys !> optional subTree of the given tree type(tem_subTree_type), optional, intent(inout) :: subTree !> additional label for the filename (needed for tracking in harvester !! format) character(len=*), optional, intent(in) :: label !> optional suffix (if present NO timestamp will be added!!!!) character(len=*), optional, intent(in) :: suffix ! -------------------------------------------------------------------- ! ! variables to catch possible MPI I/O errors integer :: iError integer :: pos character(len=pathLen) :: prefix logical :: meshChange_loc type(tem_global_type) :: global_loc ! -------------------------------------------------------------------- ! ! Update the timestamp me%header%timestamp = trim(tem_time_sim_stamp(timing)) ! Set the iteration to know when the last restart file was written me%lastWritten = timing if ( present(subTree) ) then global_loc = subTree%global else global_loc = tree%global end if meshChange_loc = global_loc%meshChange ! communicate wether the mesh has changed since last time dumping it call MPI_ALLREDUCE( meshChange_loc, global_loc%meshChange, 1, & & MPI_LOGICAL, MPI_LOR, global_loc%comm, iError ) ! if the mesh has changed ... if (global_loc%meshChange) then ! ... set the meshChange to false global_loc%meshChange = .false. ! ... get the position of the last path seperator pos = INDEX(trim(global_loc%dirname), pathSep, .true.) if ( present(label) ) then prefix = trim(global_loc%dirname(1:pos))//trim(label)//'_' else prefix = trim(global_loc%dirname(1:pos)) end if if ( present(suffix) ) then ! change the dirname using NO timestamp but the suffix write(global_loc%dirname,'(a)') trim(prefix)//trim(suffix)//'_' else ! ... change the dirname write(global_loc%dirname,'(a)') trim(prefix) & & // trim( me%header%timestamp ) // '_' end if ! ... remove a possible predefined tag global_loc%predefined = '' ! ... copy back the global information to the tree or subTree and dump it if ( present(subTree) ) then subTree%global = global_loc call tem_dump_subTree( subTree, tree ) else tree%global = global_loc call dump_treelmesh( tree ) end if end if if ( present(suffix) ) then ! define the name of the file to write the binary data to without ! timestamp but using the suffix write(me%header%binName,'(a)') trim( me%header%binPrefix )//'_' & & // trim( suffix ) & & // tem_create_EndianSuffix() else ! define the name of the file to write the binary data to write(me%header%binName,'(a)') trim( me%header%binPrefix )//'_' & & // trim( me%header%timestamp ) & & // tem_create_EndianSuffix() end if ! open the binary file for MPI I/O call MPI_FILE_OPEN( me%comm%comm, & & trim( me%header%binName ), & & MPI_MODE_WRONLY+MPI_MODE_CREATE, & & MPI_INFO_NULL, me%binaryUnit, & & iError ) call check_mpi_error( iError, 'File open of ' & & // trim(me%header%binName) & & // ' for writing in ' & & // 'tem_restart_openWrite' ) call MPI_FILE_SET_VIEW( me%binaryUnit, me%write_file%displacement, & & me%write_file%vectype, & & me%write_file%ftype, "native", & & MPI_INFO_NULL, iError ) call check_mpi_error( iError,'set File view in tem_restart_openWrite') ! write out a regular restart header ! @todo: if [[tem_restart_writeHeader]] is only called here, then it should ! not be public. It would be better not to call it here, but let user ! decide where to call it. call tem_restart_writeHeader( me = me, & & tree = tree, & & subTree = subTree, & & timing = timing, & & varSys = varSys, & & suffix = suffix ) end subroutine tem_restart_openWrite ! ************************************************************************ ! ! ************************************************************************ ! !> This subroutine closes the restart dump file and writes the last header. !! subroutine tem_restart_writeHeader( me, tree, varSys, subTree, timing, & & lastHeader, suffix ) ! -------------------------------------------------------------------- ! !> the restart header info type(tem_restart_type) :: me !> mesh, provided in treelm format type(treelmesh_type) :: tree !> global variable system defined in solver type(tem_varSys_type), intent(in) :: varSys !> optional subTree of the given tree type(tem_subTree_type), optional, intent(in) :: subTree !> type(tem_time_type), intent(in) :: timing !> is this header a last header logical, optional :: lastHeader !> optional suffix (if present NO timestamp will be added!!!!) character(len=*), optional, intent(in) :: suffix ! -------------------------------------------------------------------- ! character(len=1024) :: filename character(len=320) :: solve_line type(aot_out_type) :: conf ! aotus lua state to write output logical :: isLast type(tem_global_type) :: global_loc integer(kind=long_k) :: nElems integer :: punit integer :: read_stat logical :: nUnitOpened ! -------------------------------------------------------------------- ! if ( present(lastHeader) ) then isLast = lastHeader else isLast = .false. end if ! now write out the header file ! only one process (root) writes out the header file if (me%comm%rank == 0) then ! choose the right filename if (isLast) then filename = trim( me%header%headerPrefix )// '_lastHeader.lua' else if ( present(suffix) ) then filename = trim( me%header%headerPrefix )//'_header_' & & // trim(suffix)//'.lua' else filename = trim( me%header%headerPrefix )//'_header_' & & // trim(me%header%timestamp)//'.lua' end if end if ! Open up the restart header lua file, so we can write the stuff using ! the aotus library punit = newUnit() call tem_open( newunit = punit, & & file = trim(filename), & & action = 'write', & & status = 'replace', & & recl = 360 ) call aot_out_open(put_conf = conf, outUnit = punit) ! the binary names; for multiple schemes a list of binaries have to be ! written call aot_out_open_table(conf, 'binary_name') call aot_out_val( put_conf = conf, & & val = trim(me%header%binName) ) call aot_out_close_table(conf) ! the solver config file names call aot_out_val( put_conf = conf, & & val = trim(me%header%solverConfigFile), & & vname = 'solver_configFile' ) if( present( subTree ))then global_loc = subTree%global nElems = subTree%global%nElems else global_loc = tree%global nElems = tree%global%nElems end if ! the mesh info call tem_mesh_out( me = global_loc, conf = conf ) call aot_out_val(conf, tree%weights_file, 'weights') ! the time stamp !call aot_out_val( conf, trim(me%header%timestamp), 'time_point') call tem_time_out( conf = conf, me = timing, key = 'time_point' ) ! the total number of elements call aot_out_val( conf, nElems, 'nElems') ! the number of dofs for each scalar variable of the equation system call aot_out_val( conf, me%write_file%nDofs, 'nDofs') ! the solver tag (solver name and version) call aot_out_val( conf, trim( me%header%solverTag), 'solver') ! the variable system, incl. the solver specific ! information from the solSpec data call tem_varSys_out( me = varSys, & & conf = conf, & & dumpVarPos = me%varMap%varPos%val(:) ) ! close the restart header file call aot_out_close(conf) ! Append the solver specific data, stored in a scratch file to the header ! file, if one is provided by caller. if ( me%solSpec_unit>0 ) then inquire(unit=me%solSpec_unit, opened=nUnitOpened) if (nUnitOpened) then rewind(me%solSpec_unit) do read(me%solSpec_unit,'(a)', iostat=read_stat) solve_line if (read_stat /= 0) EXIT write(punit,'(a)') trim(solve_line) end do end if end if close(punit) end if end subroutine tem_restart_writeHeader ! ************************************************************************ ! ! ************************************************************************ ! !> read the restart header lua file and hand the information to the !! required data types, re-set the time ... !! subroutine tem_restart_readHeader( me, timing, globProc, tree ) ! -------------------------------------------------------------------- ! !> the restart header info type(tem_restart_type) :: me !> the timing for re-setting the times type(tem_time_type), intent(inout) :: timing !> Global communicator type( tem_comm_env_type ), intent(in) :: globProc !> mesh, provided in treelm format type(treelmesh_type), intent(inout) :: tree ! -------------------------------------------------------------------- ! integer :: thandle integer :: iError type( flu_State ) :: conf character(len=labelLen) :: buffer ! -------------------------------------------------------------------- ! write(logUnit(1),*) 'Opening Restart Header ' & & // trim(me%controller%readFileName) ! Open the restart header file call tem_open_distconf( L = conf, & & filename = trim(me%controller%readFileName), & & proc = globProc ) ! Load the number of elements from the restart header file for sanity check call aot_get_val( L = conf, & & key = 'nElems', & & val = me%header%nElems, & & ErrCode = iError, & & default = 1 ) ! Load the solver name call aot_get_val( L = conf, & & key = 'solver', & & val = buffer, & & ErrCode = iError, & & default = '' ) me%header%solverTag = trim( buffer ) write(logUnit(1),*) 'Solver: '// trim(me%header%solverTag ) ! Load the solver config file call aot_get_val( L = conf, & & key = 'solver_configFile', & & val = me%header%solverConfigFile, & & ErrCode = iError, & & default = '' ) ! Load the number of dofs for each scalar variable of the equation system call aot_get_val( L = conf, & & key = 'nDofs', & & val = me%read_file%nDofs, & & ErrCode = iError, & & default = 1 ) call load_tem( me = tree, & & conf = conf, & & myPart = globProc%rank, & & nParts = globProc%comm_size, & & comm = globProc%comm ) ! Load the timestamp from the header call tem_time_load( conf = conf, & & key = 'time_point', & & me = timing, & & clock_start = timing%clock_start ) me%header%timestamp = trim(tem_time_sim_stamp(timing)) write(logUnit(1),*) 'Restarting from point in time:' call tem_time_dump(timing, logUnit(1)) ! Load the variable systems call tem_varSys_load( me = me%header%varSys, conf = conf ) call tem_varSys_dump( me = me%header%varSys, outUnit = dbgUnit(3) ) call aot_table_open( L=conf, thandle = thandle, key = 'binary_name' ) ! Load the binary file names for each variable system defined call aot_get_val( L = conf, & & thandle = thandle, & & pos = 1, & & val = me%header%binName, & & ErrCode = iError, & & default = '' ) call aot_table_close( L = conf, thandle = thandle ) call close_config( conf ) end subroutine tem_restart_readHeader ! ************************************************************************ ! ! ************************************************************************ ! !> Complete a number of empty writes (due to higher amount of mpi_file_writes !! from other processes to finalize the write process), close the restart dump !! file and write the last header. !! subroutine tem_restart_closeWrite( me, tree, timing, varSys, subTree ) ! -------------------------------------------------------------------- ! !> the restart information type(tem_restart_type) :: me !> mesh, provided in treelm format type(treelmesh_type) :: tree !> The timing object holding the simulation time type(tem_time_type), intent(in) :: timing !> global variable system defined in solver type(tem_varSys_type), intent(in) :: varSys !> optional subTree of given tree type(tem_subTree_type), optional :: subTree ! -------------------------------------------------------------------- ! ! variables to catch possible MPI I/O errors integer :: iError integer :: iChunk ! chunk counter ! temporary buffer array for empty writes real(kind=rk) :: chunk(1) ! -------------------------------------------------------------------- ! ! Check, if the number of calls to mpi_file_write_all corresponds to ! the maximum number throughout all processes ! if local process has performed less writes, we need to complete ! as many empty writes as the difference to maxnChunks me%nChunkElems = 0 do iChunk = me%write_file%nChunks+1, me%write_file%maxnChunks call tem_restart_writeData( restart = me, chunk = chunk ) end do ! now close the binary file call MPI_File_close(me%binaryUnit, iError) call check_mpi_error( iError,'File close in tem_restart_closeWrite') call MPI_Barrier( me%comm%comm, iError ) ! Now write out the 'last' header which points to the last successful ! restart file. call tem_restart_writeHeader( me = me, & & tree = tree, & & subTree = subTree, & & timing = timing, & & varSys = varSys, & & lastHeader = .true. ) end subroutine tem_restart_closeWrite ! ************************************************************************ ! ! ************************************************************************ ! !> calculate the maximum number of elements which fit into the output buffer !! = chunk !! !! for a given set of variable systems with their nScalar values to dump !! Also, calculate the number of local chunks required to dump all the data !! = nChunks !! Finally find the globally largest number of nChunks !! subroutine tem_restart_getTotalChunks( restart, nElems, comm, chunkSize ) ! -------------------------------------------------------------------- ! !> the restart type type( tem_restart_type ), intent(inout) :: restart !> mesh, provided in treelm format !type(treelmesh_type), intent(in) :: tree !> optional subTree ! type(tem_subTree_type), optional, intent(in) :: subTree integer, intent(in) :: nElems, comm !> optional predefined chunksize integer, optional, intent(in) :: chunkSize ! -------------------------------------------------------------------- ! integer :: nTotalScalars integer :: iError ! MPI error integer :: rank ! -------------------------------------------------------------------- ! ! Get the number of total scalars. nTotalScalars = restart%varMap%nScalars if ( nTotalScalars == 0 ) then write(logUnit(0),*) '!! Error !! No variable found in restart varSys !!' write(logUnit(0),*) 'May be variable label in requested system is not ' & & // 'found in global varsys' call tem_abort() endif if( present( chunkSize ))then restart%read_file%chunkSize = chunkSize restart%write_file%chunkSize = chunkSize else ! Get the number of elements that fit into the IO buffer. restart%read_file%chunkSize & & = min( io_buffer_size & & / (nTotalScalars*restart%read_file%nDofs), & & nElems ) restart%write_file%chunkSize & & = min( io_buffer_size & & / (nTotalScalars*restart%write_file%nDofs), & & nElems ) end if ! check if at least one complete element fits into the buffer ! if not abort since no valid output can be garanteed if (restart%write_file%chunkSize <= 0) then write(logUnit(0),*) 'The chosen io_buffer_size of ', io_buffer_size write(logUnit(0),*) 'is too small for outputting ', nTotalScalars write(logUnit(0),*) 'scalar values with ', restart%write_file%nDofs write(logUnit(0),*) 'degrees of freedom!' write(logUnit(0),*) 'Please increase the io_buffer_size to' & & // ' at least (MB) ', & & real(nTotalScalars*restart%write_file%nDofs) & & / real(131072) call tem_abort() end if if (restart%read_file%chunkSize <= 0) then write(logUnit(0),*) 'The chosen io_buffer_size of ', io_buffer_size write(logUnit(0),*) 'is too small for reading ', nTotalScalars write(logUnit(0),*) 'scalar values with ', restart%read_file%nDofs write(logUnit(0),*) 'degrees of freedom!' write(logUnit(0),*) 'Please increase the io_buffer_size to' & & // ' at least (MB) ', & & real(nTotalScalars*restart%read_file%nDofs) & & / real(131072) call tem_abort() end if ! Get the number of chunks which are needed to dump all values to disk. ! This needs to be rounded up, to cover also a possible last incomplete ! chunk. restart%write_file%nChunks & & = ceiling( real(nElems, kind=rk) & & / real(restart%write_file%chunkSize, kind=rk) ) restart%read_file%nChunks & & = ceiling( real(nElems, kind=rk) & & / real(restart%read_file%chunkSize, kind=rk) ) ! identify the maximum number of chunks throughout all processes ! and store that into restart%maxnChunks call MPI_Allreduce( restart%write_file%nChunks, & & restart%write_file%maxnChunks, 1, & & MPI_INTEGER, MPI_MAX, comm, iError ) call MPI_Allreduce( restart%read_file%nChunks, & & restart%read_file%maxnChunks, 1, & & MPI_INTEGER, MPI_MAX, comm, iError ) call MPI_Comm_Rank( comm, rank, iError ) end subroutine tem_restart_getTotalChunks ! ************************************************************************ ! ! ************************************************************************ ! !> Finalizing a restart object !! subroutine tem_restart_finalize( me ) ! -------------------------------------------------------------------- ! !> the restart type to close type( tem_restart_type ), intent(inout) :: me ! -------------------------------------------------------------------- ! integer :: iError logical :: nUnitOpened ! -------------------------------------------------------------------- ! ! close solverspecific scratch unit if (me%comm%rank == 0 .and. me%controller%writeRestart) then if (me%solSpec_unit>0) then inquire(unit=me%solSpec_unit, opened=nUnitOpened) if (nUnitOpened) close(me%solSpec_unit) end if end if ! free the contiguous type if (me%controller%writeRestart .or. me%controller%readRestart) then call MPI_Type_free(me%write_file%ftype, iError) call check_mpi_error( iError,'Free write-ftype in restart_finalize') call MPI_Type_free(me%write_file%vectype, iError) call check_mpi_error( iError,'Free write-vectype in restart_finalize') if (me%read_file%ndofs /= me%write_file%ndofs) then call MPI_Type_free(me%read_file%ftype, iError) call check_mpi_error( iError,'Free read-ftype in restart_finalize') call MPI_Type_free(me%read_file%vectype, iError) call check_mpi_error( iError,'Free read-vectype in restart_finalize') end if end if end subroutine tem_restart_finalize ! ************************************************************************ ! end module tem_restart_module ! **************************************************************************** !