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• Complex problems

• No analytical solution

• Numerical approximation

• Using computers

Computational
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• Continually deforms when force is applied

Fluid
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• Considering the forces in fluids

• Studying the resulting fluid motion

• May be stationary or instationary

Dynamics
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• Liquids
– Forms free surface

• Gases
– Freely diffuse

• Plasma
– Ionized, highly electrical conductive

Classes of Fluids
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• Viscosity
– Relation of shear stress to speed of

deformation
• Compressibility

– Relation of volume change under pressure
• Heat conductivity

• Density

Some Defining Properties of Fluids
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Reality

Modelling

Simulation code

Physical Model

Mathematical Model

Numerical Approximation

Usage of the simulation code

Analysis of results
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• Level of detail
– Quantum – Molecular – Continuum

• Consideration of effects
– Electrodynamics? Gravity? Relativity? 

Chemical reactions?

Physical Model for Fluids
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• On the considered scale:
– Fluid covers complete space
– Infinitisimal small decomposition possible

• Knudsen number:

Continuum Assumption

mean free path
Kn = 

reference length scale
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• High Kn (>0.5):
– (For example rarefied gases)
– Physical model: Kinetic gas theory

• Knudsen flow (0.01 < Kn < 0.5)

• Low Kn (<0.01):
– (For example air around plane)
– Physical model: Continuum mechanics

Continuum Classification
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• Newtonian mechanics

• Conservation laws:
– Conservation of mass
– Conservation of momentum
– Conservation of energy

Physical Continuum Model
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• Conservation laws yield compressible Navier-
Stokes equations

• System of partial differential equations

• Describes evolution of state due to spatial fluid 
variations

Mathematical Model
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• Quantity can neither vanish nor appear
• Observing a given volume:

– Quantity only changed by transport through
the surface

• Mathematical:

Conservation Laws
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time

location

conserved quantity

flux

volume

surface

surface normal

Integral Conservation
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• Quantity transported by velocity

• Convective flux: 

Convective Transport
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• Conservation law holds for infinitisimal volumes
• Conservation in each point
Differential formulation

• Continuously differentiable:
• Divergence Theorem (replace surface by volume

integral)

• Leibniz Rule (exchange integration and
differentiation)

Conservation in Continuum
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• Divergence Theorem:

• Incoporate in the conservation law

• Yields:

Replacing Surface by Volume Integral
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• Using Leibniz's rule and pulling everything into
one integral:

• Conservation holds for any volume
Conservation in each point

Differential Conservation Law
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• Conserved: Mass density
• Changed by:

– Convection

• Integral form:

• Differential form:

Conservation of Mass



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD01 - CFD - An Overview 20

• Conserved: Momentum density
• Changed by:

– Convection
– Surface forces

• pressure

• friction

– Possible volume forces (gravity, 
electromagnetism)

Conservation of Momentum

(Stress deviator tensor)

(Identity tensor)

(Dyadic product)
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• Integral form:

• Differential form:

Conservation of Momentum
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• Deformation tensor:

• Stress tensor in Navier-Stokes equations:

volume viscosity
dynamic shear viscosity

Stress Deviator Tensor
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• Newtonian fluid:
– Viscosity independent of shear rate
– Still may depend on thermodynamic

quantities (often temperature)

• Non-Newtonian fluids:
– Viscosity varies with shear rate
– Rheology

Newtonian Fluids
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• Conserved: Energy density
• Changed by:

– Convection

– Work of surface forces

– Heat conduction

• Possible work by volume forces; Heat sources
(e.g. chemical reactions, radiation)

Conservation of Energy
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• Integral form:

• Differential form:

Conservation of Energy
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• Relation of thermodynamic quantities density, 
pressure and temperature

• Simplest thermodynamic model is the ideal gas
assumption:

gas constant

Equation of State
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• Specific heat capacity assumed to be
constant

• Direct proportional relation between inner
energy and temperature:

• Together with the ideal gas model: 

Calorically Perfect Gas

with as ratio
of specific
heats
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• Usually ideal gas sufficient

• More complex models required for
– close to phase changes
– close to critical points
– high pressures
– low temperatures

• Compressibility factor as measure

Real Gas
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• Virial model: Series of perturbative terms

• Van der Waals: Most prominent 2 term model

• Redlich-Kwong: 2 term model often more
accurate than van der Waals

• Many more of varying complexity

Real Gas Models
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+ Equation of state
 Perfect gas:

Compressible Navier-Stokes Equations

Image: game-icons.net, Lorc



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD01 - CFD - An Overview 31

• Introduce suitable reference values

• Define all quantities in relation to reference
values

• Useful for classification of flows

• Helps to limit value range

Nondimensionalization
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• Choose a characteristic length, pressure, 
density and velocity

• Accordingly you get a characteristic time scale, 
speed of sound and temperature

• Normalize all quantities with the references

Reference Values
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• Ratios of flow effects, experiments with the
same parameters show same behavior

• Mach number

• Reynolds number

• Prandtl number

Similarity Parameters

Flow velocity

Speed of sound

Fictitious force

Friction

Momentum diff.

Thermal diff.
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• Similarity parameters of reference, perfect gas:

Nondimensional Navier-Stokes Equations

Image: game-icons.net, Lorc
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• Depending on the problem
• Some examples:

– Péclet number Pe (transport)
– Froude number Fr (gravitation)
– Richardson number Ri (weather)
– Rayleigh number Ra (free convection)
– Strouhal number St (vortex shedding)

Other Similarity Parameters
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• Two important simplifications often deployed:

– Inviscous flows: Euler equations
• Neglecting diffusive processes

– Incompressible flows
• Density independent of pressure
• Infinite speed of sound

Simplifications
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Simplification Overview

Compressible Navier-Stokes equations
include friction and thermal conduction

hyperbolic – parabolic

Euler equations
Gas dynamics

hyperbolic

Incompressible Navier-
Stokes

equations
parabolic - elliptic
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• Different classes of PDEs

Different numerical methods

Flow Regimes
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Simplification to Euler Equations

Compressible Navier-Stokes equations
include friction and thermal conduction

hyperbolic – parabolic

Euler equations
Gas dynamics

hyperbolic

Incompressible Navier-
Stokes

equations
parabolic - elliptic
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• Compressible Navier-Stokes -> Euler equations

Neglect Friction and Heat Transport
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• Hyperbolic system (wave transport)

+ Equation of state (usually ideal gas)

Gas Dynamics: The Euler Equations

Image: game-icons.net, Lorc
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• Nonlinear transport problem
• State travels along characteristics
• Formation of discontinuities (shocks)

Gas Dynamics

Image: NASA Photo

Schlieren image
of supersonic
aircraft with
shock waves.
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• Gather state in one vector:

• Also the flux:

• (Equation of state for perfect gas in flux)

Vectorial Notation (1D, Perfect Gas)
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• First order, nonlinear PDE system

• Conservative variables

• Compact notation shows structure of the PDEs

Compact Notation of the System with Vectors
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• Space coordinate becomes a vector

• Momentum becomes a vector
– ( more components in the state vector)

• Get a flux for each spatial dimension

More Spatial Dimensions
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• For d dimensions we have:

• For example in 2D, 2 fluxes with 4 components:

Compact Notation, Multiple Spatial Dimensions
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Simplification To Incompressible

Compressible Navier-Stokes equations
include friction and thermal conduction

hyperbolic – parabolic

Euler equations
Gas dynamics

hyperbolic

Incompressible Navier-
Stokes

equations
parabolic - elliptic
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• Compressible Navier-Stokes -> Incompressible

Neglect Density and Temperature Changes
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• Constant density:
– One variable less
– mass conservation reduces to divergence free

constrained for the velocity field:

• Note: no time dependency in this equation

Divergence Free Flow
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• With
• And constant temperature (                )

The energy balance does not provide any
additional information

One Equation Less
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• Parabolic – Elliptic system of PDEs:

• Variables:
Velocity
Pressure

Incompressible Navier-Stokes Equations

Image: game-icons.net, Lorc
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• Incompressible and inviscid

• Can use a scalar potential to describe the
velocity field

Potential Flow



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD01 - CFD - An Overview 53

• Finite Differences
• Finite Volumes
• Finite Elements

– continuous
– discontinuous

• Finite Points
• Smoothed Particle

Hydrodynamics

• Lattice Boltzmann
• Pseudo-Spectral
• Boundary Elements
• Panel Method

(potential flows)
• Vortex Lattice

(potential flows)

Numerical Methods



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD01 - CFD - An Overview 54

• Approximates differentials by difference
quotients on a grid with point values

• Will be briefly discussed on Tuesday
• Solver using this scheme:

– Overture
(http://www.overtureframework.org/)

Finite Differences
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• Utilizes an integral formulation with integral 
means in control volumina and the fluxes
between those

• Will be discussed on Tuesday
• Solvers using this scheme:

– OpenFOAM (dedicated course)
– Code Saturne (https://www.code-saturne.org/cms/)

– Gerris
(http://gfs.sourceforge.net/wiki/index.php/Main_Page)

Finite Volume
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• Utilizes functions in elements to represent the
solution

• Will be discussed on Wednesday (continuous) 
and Thursday (discontinuous)

• Solvers using this scheme:
– Elmer (https://www.csc.fi/web/elmer)
– Nektar++ (https://www.nektar.info/)
– Ateles

(http://www.apes-suite.org/pages/ateles)

Finite Elements
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• Meshfree method based on scattered point
values with a solution construction from a local
point neighborhood

• Least-Square fitting of unknowns
• Interesting for moving/deforming boundary

problems

Finite Points
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• Meshless, lagrangian method: particles build
the fluid and a kernel function describes the
“range“ of the properties of the particle

• Especially interesting for free-surface flows
• Solvers implementing this scheme:

– AQUAgpusph (http://canal.etsin.upm.es/aquagpusph/)

– Pysph (https://pysph.readthedocs.io/en/latest/)

– FLUIDS (http://fluids3.com/)

Smoothed-Particle Hydrodynamics
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• Works on the Boltzmann equation with a 
discrete space

• Cellular automata on a mesoscopic level
reproduce Navier-Stokes equations in a 
macroscopic view

• Solvers with this scheme:
– Palabos (http://www.palabos.org/)

– Musubi (http://www.apes-suite.org/pages/musubi)

– OpenLB (http://www.openlb.net/)

Lattice-Boltzmann



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD01 - CFD - An Overview 60

• Approximation of the solution by a function
series

• Highly efficient for smooth problems
• Limitations by function choice an geometrical

layout
• Example: http://dedalus-project.org/
• Spectral Element Method solver:

– Nek5000 (https://nek5000.mcs.anl.gov/)

(Pseudo)-Spectral
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• Uses boundary values to define solution to
integral equation

• Requires Green‘s function to be computable for
the given problem

• Solvers for this scheme:
– FastBEM (http://www.yijunliu.com/Software/)

– Nemoh (https://lheea.ec-nantes.fr/logiciels-et-
brevets/nemoh-presentation-192863.kjsp)

Boundary Elements
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• Represents a potential flow by superposition of
various singularities

• Singularities organized in panels to represent
walls in the flow

• Solvers implementing this scheme:
– XFOIL (http://web.mit.edu/drela/Public/web/xfoil/)

– Panair (http://www.pdas.com/panair.html)

– Q-Blade (http://www.q-blade.org/)

Panel Method
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• For potential flows
• Prandtl‘s lifting lines theory
• Model lifting surfaces by discrete vortex lines
• Surfaces discretized into panels with horseshoe

vortices
• Implementation:

– OpenVOGEL
(https://sites.google.com/site/gahvogel/main)

Vortex Lattice
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• We will look at the „classical“ methods (FDM, 
FVM and FEM)

• We will use the batch system to run larger 
computations on a parallel HPC system

• We use Ateles as a solver and look at the
workflow from mesh generation to visualization

Focus of This Course


