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• Classification of flow by compressibility :

• Compressible flows
• Incompressible flows
• (weakly compressible flows)

• Some other classifications:

• Friction: Flows w/wo friction, turbulent and laminar flows
• Mach number: Subsonic, transsonic, supersonic, hypersonic
• Behavior: Stationary/instationary flow

Flow regime
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• Equation for density (isentropic expansion from 
ideal state 0):

• The Mach number determines the possible 
density variations:

Differentiation compressible - incompressible
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Density variation possible, compressible flow
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• Although density variations (compressibility) become possible for M 
> 0, todays compressible methods can only work efficiently up to a 
minimum Mach number of M ≈ 0,1 – 0,3.

• Beneath this threshold the flow can be well considered 
incompressible. The relative error for density at the Mach number 
M = 0,3 is ca. 4,4%. 

• There is no such thing as incompressible flow but depending on the 
needed precision, the assumption of incompressibility can be 
justified.

Distinction weakly compressible –
compressible - incompressible

Fall 2023 HPCFD02 - Fundamentals and Examples 4



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Definition:

The Mach number
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Relation between flow velocity and speed of sound. 
The flow velocity is an easy comprehensible quantity, but what about 
the speed of sound?
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A measure, how variations in pressure and density correlate. 
A large c results in a small density variation, that correlates with a 
large variation in pressure.
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C small: lower density
Change in pressure (disturbance)
Causes change in density

The disturbance spreads from element to element

C  : high density
Change in pressure (disturbance)
Causes no change in density

The disturbance spreads immediately to all elements
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What does this correlation entail in the context of fluid flow ?
A very simplified model illustrates:

The speed of sound
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Incompressible flows

Fluid flows without or very little density variations arise in a multitude 
of applications.

That applies in general for liquids. The speed of sound is very high and 
compression of the medium becomes only possible with very high 
pressure. The Mach number will therefore be always small.  

For slow fluid flows (M < 0,1 – 0,3) the assumption of incompressibility 
can be justified for some applications. The error, that is introduced by 
neglecting the pressure variations, is considerably small.
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Flow around a fish under water

Example for incompressible flows (1)

Source: Terry Goss, Guadalupe 2006
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Flow around a U-Boat

Example for incompressible flow (2)

Source: National Oceanic and Atmospheric Administration 
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Example for incompressible flow (3)

Airflow with M < 0,3 (equals v < 370 km/h)
Source: Onera
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Flow around a glider

Example for incompressible flow (4)

Source: Akaflieg Universität Stuttgart 
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Compressible flow

Once the density variation within a flow field cannot be neglected, the 
flow needs to be considered compressible.

One significant feature of compressible flows is the appearance of 
discontinuity (pressure shocks).
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• Very high velocities
• Compaction shock at the tip

Examples for compressible flow (1)

Source: NASA

Source: Ansys
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• Acceleration of a fluid within a nozzle

Examples for compressible flow (2)

Source: Onera

Source: Onera
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Examples for compressible flow (3)

Quelle: NASA
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Examples for compressible flow (4)

Quelle: IRS Universität Stuttgart 
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Examples for compressible flow (5)

Quelle: US Navy
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Examples for compressible flow (5)

Quelle: US Navy
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• Aircraft at transonic speed

Examples for compressible flow (6)

Quelle: IAG Universität Stuttgart Quelle: DLR
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Examples for compressible flow (7)
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Examples for compressible flow (8)
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From the incompressible to the compressible 
regime

Using an airfoil with different Mach numbers the changes in the fluid 
flow are explained.
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• Symmetric pressure distribution

Airfoil at M = 0.05
Mach number Pressure distribution
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• Symmetric pressure distribution

Airfoil at M = 0.5
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• At the airfoil top the speed of sound is barely reached

Airfoil at M = 0.77
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• Formation of a local supersonic region, which is closed by a shock

Airfoil at M = 0.8
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• Enlargement of the supersonic region; increase in shock intensity

Airfoil at M = 0.85
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• Supersonic inflow leads to a detached head wave (bow shock) – region 
with high losses

• Disturbances travel only downstream

Airfoil at M = 1.15
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• Attached shock at tip

Airfoil at M = 2 
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Flow with and without friction

For some cases it is justifiable to neglect the friction. The Euler equations are 
then used.
An important parameter for the interaction between friction and velocity is the 
Reynolds number:


 vx 

Re

The Reynolds number is an important similarity parameter in fluid mechanics.

Flows with equal Reynolds number behave the same: 
Flow around a body x = 10 m, v = 10 m/s results in the same as
the flow around x = 1 m, v = 100 m/s, using the same density and viscosity.

 Important for measurements in wind tunnel.
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Flow around a cylinder – Euler equations

• Perfectly symmetrical 
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Flow around a cylinder - Navier-Stokes equations
(Reynolds number small)

• Formation of a boundary layer as well as a vortex street (non-stationary
flow)

• Using Euler equations at small Reynolds numbers results in the same  
flow field, which is wrong.
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Laminar and turbulent flow

Laminar flow Turbulent flowTransition point

Turbulent flow (almost always the case) is one of the biggest challenges for 
todays CFD-methods. The small turbulent scales can usually not be resolved 
but have an impact on the flow field.
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The numerical methods that are discussed in this course are based on the  
numerical treatment of the basic phenomena of compressible flow. 

The experimental facility to explore these phenomena is called a shock tube.

Important phenomena of compressible flow
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Quelle: IAG Universität Stuttgart
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Used for the experimental investigation of gas-dynamic phenomena. 
How it works: A long tube is split into two chambers by a membrane. 
Chamber 1: High pressure, Chamber 2: Reduced pressure

Shock tube

Chamber 1 Chamber2

111 ,, vp  222 ,, vp 

Membrane

At the beginning of the experiment the membrane is destroyed. 
As a result, a pressure compensation process is started, with which the gas 
can be accelerated to supersonic speed. Hereby different gas dynamical 
phenomena can be observed.
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Evolution of the phenomena

111 ,, vp  222 ,, vp 

111 ,, vp  222 ,, vp 

t=0
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Evolution of the phenomena

t

Fall 2023 HPCFD02 - Fundamentals and Examples 38



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Evolution of the phenomena

t
Shock wave

Expansion fan

Contact surface
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Evolution of the phenomena

t
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Shock wave

Expansion fan

Contact surface
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Shock tube (2)
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Phenomena within a shock tube – shock
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• The (compression) shock is a gas dynamic phenomenon, whereby changes 
of density, pressure, velocity and all connected parameters happen in a 
very small spatial scope.

• A shock is always related to an increase of entropy. It leads to losses in the 
total pressure, which are irreversible.

• Example: Supersonic boom.

Phenomena within a shock tube – shock

Shock system around a test-body 
at Mach 2.5
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• Model: Cylinder, in which a piston is moved abruptly several times 
• Each change in piston velocity creates a disturbance, which moves at the speed of 

sound
• Each disturbance entails small changes in the state parameters, 

i.e. the speed of sound is higher behind the piston before

• The first disturbance is the slowest, the last one the fastest. Therefore the 
disturbances catch up to another.

The creation of a shock

0c
1c2c3c4c5c6c
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Phenomena within a shock tube – contact 
surface
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Phenomena within a shock tube – contact 
surface
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• In fluid mechanics a contact surface represents a jump in density or the 
change of material.

• If there is only a change in density while pressure and velocity are equal, 
there is no change in state, when using the Euler equations (frictionless).

• The contact surface within the shock tube is created because the pressure 
is faster equalized than the density. Once the pressure difference is gone,  
there is no driving force anymore, that could equalize the density.

Phenomena within a shock tube – contact 
surface
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Phenomena within a shock tube – expansion 
fan
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Phenomena within a shock tube – expansion 
fan
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• In comparison to the shock, the behavior of the expansion fan is quite the 
opposite. The fluid is getting thinner as it flows downstream.

• A jump in values similarly to the shock is not possible. It would entail, that 
the entropy over the „expansion shock“ would sink, which is physically 
impossible. Therefore it is a continuous change that is also isentropic.

Phenomena within a shock tube – expansion 
fan


