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• Classification of partial differential equations
• Classification of the Euler and Navier-Stokes

equations
• Flow phenomena: Shocks, rarefaction, contact 

discontinuity  
• Numerical schemes

Mathematical Description of Fluid Dynamics
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• Second-order Partial Differential Equations 
(PDE)
– Elliptic, parabolic, hyperbolic

• Conservation equations
• Transport equations

Classification of Partial Differential Equations 

Fall 2023 3HPCFD03 - Numerics of  Partial Differential 
Equations
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Second-Order PDEs
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Classification of Second-Order PDEs
)y,x,u,uh(u,cubuau yxyyxyxx 

Criteria:

a) hyperbolic : b² - 4ac > 0

b) parabolic : b² - 4ac = 0
c) elliptic  : b² - 4ac < 0

Analog: conic section ax2 + bxy + cy2 = r

a) b) c)
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• Physics:
o Stationary problems: heat transport, potential flow, 

electric potential
o Stationary subsonic flows
o Membrane deflection

• Mathematical model:
o Laplace equation 
o Poisson equation
o Helmholtz equation

Elliptical Differential Equations

0uu yyxx 

f yyxx uu
0uu yyxx  ku
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• Boundary value problem

Constraints on Elliptical Differential Equations

Dirichlet condition

Neumann condition

Robin condition
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Parabolic Differential Equations

• Physics:
o Heat transport, diffusion processes
o Friction-viscosity
o Transient processes

• Mathematical model:
o Heat equation
o Heat equation 1D

• Limit for stationary processes (ut=0):
Parabolic  elliptic

u tu

xxutu
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• Initial value and boundary value problem

Constraints on Parabolic Differential Equations

t
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value

boundary
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Hyperbolic Differential Equation

• Physics:
o Wave propagation, acoustic
o Electromagnetic waves
o Gas dynamics 

• Mathematical model:
o Wave equation
o Wave equation 1D

uc  2
ttu

xxuc2
ttu 

0  c :velocitytransport 



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD03 - Numerics of  Partial Differential 
Equations 11

• Initial value problem

Constraints on Hyperbolic Differential 
Equations

  x     g(x)u(x,0)

Annotation: In practical simulations, the flow depends on initial values
and boundary values (e.g. flow around an airfoil). The boundary values
are not fixed, but depend on the solution of the flow. Boundary values
have to satisfy compatibility conditions.
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Hyperbolic Differential Equations of 1. Order

Wave equation 1D:
Transformation in system of first order:
New variables:            ,
Resulting in two equations of first order

q utp cux
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system of first order
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• Simplest hyperbolic equation in 1D:

• Simplest hyperbolic equation in 2D:

• Simplest quasi-linear hyperbolic equation

Hyperbolic Differential Equations of 1. Order

ut aux buy  0

ut aux  0

ut uux  0

Linear transport equation

Burgers’ equation
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• Burgers’ equation

• In general:
u,f,g are scalars or vectors.

Conservation Law in 1D
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• In general
u,f,g are scalars or vectors

Conservation Law in 2D
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Compressible Navier-Stokes Equation

equation of state


v

e

density

velocity

energy

p


q

pressure

viscosity

heat flux

  0ρvρ t 

     fτpvρvρv t  

   Qvfqv)(τpevet 

conservation of mass

conservation of momentum

conservation of energy

    hg       ,  1 2
1   vvep

ideal gas inner kinetic potential
energy

system of conservation laws/ equations
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Euler Equations

equation of state


v

e

density

velocity

energy

p Pressure

  0ρvρ t 

     0 pvρvρv t 

   0 pevet

conservation of mass

conservation of momentum

conservation of energy

          ,  1 2
1 vvep  

ideal gas inner kinetic
energy

system of conservation laws/ equations
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• Has to satisfy linear transport equation

• Comparison of coefficients

Theory of Characteristics
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 C : dx
dt

 a(x, t)

a = const.  C is linear
u = const. on C  u( x, t ) = u( x - at, 0 )



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD03 - Numerics of  Partial Differential 
Equations 19

Solution of Initial Value Problem for Linear 
Transport Euqations

u( x, t ) = u0(x – at)    for every x, t

x0at0
x

t

(x0,t0)

a
dt

dx(t)
:C 

Information is transported along characteristics.
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Solution is Constant along a Characteristic

x = a t + x0
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Euler Equations – Flow Phenomena
The non-linear Euler equations allow for discontinuities 
in the solution, known as shocks. Shocks can be 
generated out of smooth initial values. 

Example: The compression of a supersonic flows in front 
of a wall generates a shock.

wall

supersonic flow

( M > 1 )

shock wave
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Euler Equations – Flow Phenomena II 
The non-linear Euler equations allow for smooth solutions, 
too. These phenomena are known as rarefaction fans.

Example: Rarefaction of supersonic flows close to walls. 

wall

supersonic flow

( M > 1 )

rarefaction fan
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Euler Equations – Flow Phenomena III 
The non-linear Euler equations allow for material 
interfaces (e.g. water-air, hot and cold fluid,..). These 
phenomena are called contact discontinuities.
Example: Separation of hot and cold fluids.

hot fluid

T = 200°C

cold fluid

T = 50°C

contact discontinuity
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• The Euler equations are hyperbolic equations –
non-linear wave equations.

• Problems: Shocks and Rarefaction
Characteristics of non-linear equations depend 
on the solution and can intersect: The solution 
cannot be differentiated  The differential 
system of equations is not longer valid.

• The numerical method must handle all 
phenomena: Shock capturing

Properties of the Euler Equation
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Compressible Navier-Stokes Equation - Type

equation of state


v

e

density

velocity

energy

p


q

pressure

viscosity

heat flux

  0ρvρ t 

     fτpvρvρv t  

   Qvfqv)(τpeve t 

conservation of mass

conservation of momentum

conservation of energy

p  1     ,      e   1
2  vv    gh

ideal gas inner kinetic potential
energy

system of conservation laws/ equations

Parabolic –
Hyperbolic!!!
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• The Navier-Stokes equations are hyperbolic-
parabolic equations.

• Problems:
Small viscous terms and heat flux (high Re):
hyperbolic terms dominate: Shocks and 
Rarefaction

• The numerical method must handle all 
phenomena: Shock capturing

Properties of the Navier-Stokes Equation
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Incompressible Navier-Stokes Equation - Type

0v

,fv
Re

1
p

1
vvv t











Viscous terms: 
parabolic

Convection : 
hyperbolic

Pressure: 
elliptic

The incompressible Navier-Stokes equations are 
parabolic-elliptic.  At high Reynolds numbers, the 
hyperbolic terms are dominating.



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD03 - Numerics of  Partial Differential 
Equations 28

• Numerical methods for solving partial 
differential equations
1. Finite Difference (FD) methods
2. Finite Element (FE) methods
3. Finite Volume (FV) methods

Numerical Schemes
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• Idea: 

Differences Methods (Finite Differences – FD)

Exchange the derivatives by difference quotients.

Partial differential equation  => 
System of differential equations are evaluated at grid points.

     
h

xuhxu
limxu

0h






derivative difference quotient
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Step 1: Discretization of Computational Domain

b][a,I 

Equidistant grid: grid spacing
n

ab
x 




n+1: number of grid points

n:     number of grid steps

n0,...,i    , x iΔa x i 

Domain:             Intervall 

Discretization:  grid point
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Taylor series

For each derivative insert difference quotient 

Step 2: Difference Quotient 
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Step 2: Difference Quotient II
       2

ix
1i1i xOxu

x2

xuxu



 

       xOxu
x

xuxu
ix

i1i 



       xOxu
x

xuxu
ix

1ii 

 

Central difference quotient
2. order

right-hand difference quotient
1. order

left-hand difference quotient
1. order

         2
ixx2

1ii1i xOxu
h

xux2uxu


  Central difference quotient , 
2. order for 2. derivative

• Difference quotient of higher order requires more than 3 points

• Difference quotient of different order and type

• Non-equidistant:  terms are more complicate
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1. Step: Discretization of computational domain, 
grid

2. Step: Selection of difference quotient,    
derivatives are substituted by    
difference quotients 

3. Step: Reordering of the difference equation
4. Step: Solving the difference equation     

linear system 

FD Methods: Procedure
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FD – Poisson-Equation

Domain :

Boundary value (Dirichlet):
u(a,y)=ua(y)
u(b,y)=ub(y)
u(x,c)=uc(x) 
u(x,d)=ud(x)

f yyxx uu

d][c, x b][a,

d][c, yfor 

 b][a,for x
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1. Step: Discretization

yj+1

yj

yj-1

xi-1 xi xi+1

∆y

∆x 21 n

cd
Δy     ,

n

a-b
Δx




2j

1i

n0,...,j    ,y  jΔcy

n0,...,i     , x iΔax




grid points

equidistant grid spacing
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2. Step: Difference Quotient

)y ,(xu    appr.    
Δy

u2uu

)y ,(xu    appr.    
Δx

u2uu

jiyy2

1ji,ji,1ji,

jixx2
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Insert the finite differences into differential equation of the Poisson equation:
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at each inner grid point  xi, yj
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3. Step: Rearranging of the Equations

stencil 

i, j+1

i-1, j i, j i+1, j

i, j-1
y

x

Pi,j=(xi,yj)  

ui,j≈u(xi,yj)
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approximation

Equation at each inner grid point

exact value
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3. Step: Construction of Linear System

1n , ... 1,j , 1-n , ... 1,i                   

  fueuducubua      

21

ji,1ji,ji,j1,iji,ji,ji,j1,-iji,1ji,ji,
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Special treatment: boundary values
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Form of Linear System
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LS
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• Numerical Methods
Gauss-Algorithm
Drawbacks: expensive, computes with all zero
More suitable: Iterative methods

Solving LS to a certain accuracy

Step 4: Solving the Linear System
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• Classical iterative methods: Jacobi-, Gauß-Seidel-, SOR-
Method ill conditioned systems with small steps. Only for 
small systems.

• CG-method (Method of conjungent gradients)                
Matrices are symmetric and positive definite

• Methods of general residual, Krylov-subspace methods 
Generalization of the CG-Method: GMRES, BIGSTAB

• Multigrid-methods Surpasses the disadvantage of 
classical iterative methods by solving the equation on 
different fine grids. Fast, but depending on parameters.

Iterative Methods for Sparse Linear Systems
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Finite Differences for Heat Equation: Explicit

xxt uu 

explicit method
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1-ix ix 1ix 

stencil

Heat equation:
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Finite Differences for Heat Equation: Implicit I
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backward central
differential quotient

nt

1nt 

1-ix ix 1ix 

stencil

Linear system of equations
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Tridiagonal system of equations



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD03 - Numerics of  Partial Differential 
Equations 44

Implicit Methods
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Fully implicit method
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FD for Parabolic Differential Equations -
Summary

Explicit methods

The explicit method  O(Δt, Δx2) is conditionally stable and requires

2
d2

Δx~Δt
2

1

Δx

Δt


The stability constrain leads to a practical accuracy of O(Δx2) which 

correspondence to a method of second order in space and time.

Implicit methods

The implicit method O(Δt, Δx2) or the Crank-Nicolson-method O(Δt2, Δx2) are 
unconditionally stable.
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FD for Hyperbolic Differential Equations

 a   ,  0auu xt Linear system of transport 
equations

Explicit difference method

0
x2
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Δt

uu n
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n
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n
i
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or  n
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 2Δx Δt, O

A Neumann stability analyze leads to:
Unconditionally unstable !!!!
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One-Sided Differences

t
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dt

tdx
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Is  this method stable?

Left-hand differences

Right-hand differences

Dependency is 
motivated by physics!

Case a>0:
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Upwind Method or CIR-Scheme
von Neumann stability analysis: The CIR- method is conditionally stable
under the condition:

1
Δx

Δt
a  CFL condition

nt

1nt 

1-ix ix 1ix 

The numerical dependency must
match the physics.

characteristic
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Upwind Method or CIR-Scheme II

Courant, Isaacson,
Rees - CIR
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Upwind-method:

Design the differences in opposite direction to the information 
transport. The direction of the characteristic is reflected by the 
numerical method.
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Implicit Method

Fully implicit
0

x2Δ
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uu 1n
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LS, unconditionally stable

Crank – Nicolson - Verfahren
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Time step restriction
 Parabolic

Step size restriction: quadratic
Only possible for small κ

Hyperbolic
Step size restriction: linear
Generally used for transient problems, stability
requires Upwind approximation.

Explicit Methods for Parabolic-Hyperbolic PDEs

2Δx~Δt 

Δxa~Δt
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• Finite Differences (FD)
– Solution is represented by point values
– Simple coding, even for complex equations
– Very complex on unstructured grids
– Problem with discontinuities/strong gradients

Summary FD
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Finite Element Method

Different approach: approximation by a 
continuous function:





N

1i
i )()(û  t)(x,u~ xt i

Basis functionDegree of freedom
(DOF)

The degree of freedom are chosen in a manner to obtain the best 
possible approximation.
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• Finite Element(FE)
– Solution is represented by basis functions
– Even more complex to code than FV
– Arbitrary, unstructured grids
– Special techniques at strong gradients

Summary FE

u
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– Approximation of integral mean values
– Standard for conservation lows
– Strong gradients or discontinuities are easy 

to handle
– Flux calculation between adjoint cells: 

Riemann problem: shock capturing
– Reconstruction, piecewise polynomial

Finite Volume Method



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD03 - Numerics of  Partial Differential 
Equations 56

Comparison of FD, FE, FV
• Finite Difference (FD)

– Solution is represented by point values
– Simple coding, even for complex equations
– Complex on unstructured grids
– Problems at large gradients (Discontinuities)

•Finite Volume (FV)
– Representation as cell mean value
– More complex to code than FD
– Arbitrary, unstructured grids
– No problem at large gradients

•Finite Element (FE)
– Solution is superposition of basis functions
– More complex to code than FV
– Easy on arbitrary, unstructured grids
– Requires special techniques at large gradients and 

shocks

u

u

u


