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• The Euler eq. in 1D are defined as

• with the conserved variables u and the physical flux f(u)

• and the equation of state for a calorically perfect gas
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Euler Equations in One Dimensions
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• The conservation law

• integrated over the control volume [xi-½,xi+½]x[tn,tn+1] yields
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Finite Volume Method in 1D
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• We consider temporal and spatial integral mean values

• The discrete form is 
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Finite Volume Method in 1D
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• The discrete form of the FV method in 1D is given by

• Integral mean value:

• Numerical flux:

• Problem: Computation is performed on cell mean values, 
but the values at the cell edges are required for the 
flux calculation. How is the numerical flux computed?
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Finite Volume Method in 1D
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• Compute mean value of both fluxes at the cell edges:

• Formula is identical to FV with a central differential quotient, 
which is unconditionally unstable:

• Can be stabilized by additional artificial viscosity --> 
Jameson-Schmidt-Turkel scheme
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Flux Calculation: Central Flux
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Godunov‘s Idea in 1D – Godunov‘s method

• Piecewise constant values in each cell.
• Solve Riemann problem at each cell interface.
• Exact solution of the non-linear Riemann problem.
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Godunov‘s Idea in 1D – Godunov‘s method
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• At each cell edge, a shock tube problem is considered:

constant state constant state
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• At each cell edge, the Riemann problem is solved:

• The exact solution is obtained via fix-point iteration.
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Riemann Problem for the Euler equations

contact 
discontinuity

shock wave

rarefaction 
wave
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• FV method:

• Numerical flux of Godunov at :
• uRP: Solution of the Riemann problem 

at the cell interfaces.

• Drawback:
• expensive
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Formulation as Finite Volume Method
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Approximate Riemann Solvers

Can be classified as follows:
1. Flux-difference splitting schemes (Godunov-type 

schemes)
--> Godunov, Roe, HLL, Lax-Friedrichs, Osher
2. Flux-vector splitting schemes

--> Steger-Warming, van Leer, AUSM, AUSMD, …
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Approximate Riemann Solvers

Can be classified as follows:
1. Flux-difference splitting schemes (Godunov-type 

schemes)
--> Godunov, Roe, HLL, Lax-Friedrichs, Osher
2. Flux-vector splitting schemes

--> Steger-Warming, van Leer, AUSM, AUSMD, …

Godunov-type flux have to fulfill the following:

1. Consistency with the integral conservation
2. Consistency with the entropy inequality eq.
3. Consistency
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• P. Roe (1981) exchanges the exact solution of the Riemann 
problem by the solution of the linearized Riemann problem:

• The matrix is called Roe-matrix, if
1. Consistency:
2. is diagonalizable (hyperbolic)
3. A is consistent with the integral conservation:
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Roe Riemann Solver
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• Flux and Jacobian of the 1D Euler equations

• Enthalpy speed of sound

• The eigenvalues are:
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Derivation of the Roe Mean Values
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• The Roe-Matrix is given by

• with the Roe mean values for calorically perfect gas:

HPCFD04 – Finite Volume Method 19

Roe Mean Values for Ideal Gas
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• If a matrix is diagonalizable, a Matrix exists which 
satisfies

• Matrix of eigenvectors:
• ri – eigenvectors for the eigenvalue ai ,i.e.,
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What is the Reason for the Linearization?
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• The linearized eq. system can be transformed into the 
characteristic normal form:

• Characteristic variable:
• m decoupled scalar linear transport equations
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What is the Reason for the Linearization?
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Exact Solution of the Linearized Riemann 
Problem for the Euler Eq.

213 
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1. Transformation into the characteristic variables

2. Determine the coefficients, i.e., the Roe mean values,
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3. The four constant states are

Numerical flux:
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central flux

correction according 
to wave propagation; 

dissipation matrix

Fall 2023

Exact Solution of the Linearized Riemann 
Problem for the Euler Eq. II
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• Exact resolution of the shock wave and the contact 
discontinuity.

• Problem: The Roe method violates the consistency of the 
entropy condition at rarefaction fans.

• This is only a problem for transient rarefaction waves.
• Solution: An entropy-fix ensures consistency with the 

entropy inequality eq., e.g., the approach of Harten redefines 
the wave speeds
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Properties of the Roe Scheme
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• The HLL method is the simplest Godunov-type Riemann 
solver.

• Only the fastest and the slowest waves are considered.
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Riemann Solver of Harten, Lax & Van Leer (HLL)
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• Additional simplification of the Roe solver, i.e., an 
approximation of the linearized Riemann problem of Roe.

• Only one average state is present:

• aL, aR are the smallest and largest wave speeds

• uLR is the average state
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Riemann-Solver of Harten, Lax & van Leer II
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• Consistency with the integral conservation yields the average 
state

• The numerical flux function is given by

• The wave speeds are computed as

• Local Lax-Friedrichs: use only the (locally) fastest wave speed
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Riemann Solver of Harten, Lax & van Leer III
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Riemann Solvers - Summary

Godunov scheme
Exact solution of the 
non-linear Riemann
problem;
iterative

Fall 2023

Roe scheme
Exact solution of the 
linearized Riemann
problem;
characteristic theory

HLL scheme
A priori estimation of 
the fastest and slowest 
wave velocities
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• Flux-vector splitting methods split the flux into a right and 
left travelling part:

• with non-negative eigenvalues

• and non-positive eigenvalues

• The numerical flux is given as
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Flux Vector Splitting Method

left right
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Flux Vector Splitting: Steger & Warming

1. Diagonalization

2. Splitting of the eigenvalues

3. Split the flux:
• Using the Euler Theorem:

• This yields the numerical flux function of Steger & Warming

Fall 2023
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Flux-Vector Splitting: Steger & Warming II
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Flux-Vector Splitting: van Leer in x-direction
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Flux Computation - Summary

• Flux computation is upwind based:
1. Flux-difference splitting schemes (Godunov-type schemes)

--> Godunov, Roe, HLL, Lax-Friedrichs, Osher
2. Flux-vector splitting schemes

--> Steger-Warming, van Leer, AUSM, AUSMD, …

• Assumes piecewise constant cell values
--> first order accurate; results are quite similar

Fall 2023
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• The differential equation

• requires the differentiability of the solution, which cannot 
be guaranteed.

• In the context of the Euler eq., these are shock waves and 
contact discontinuities.
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Finite Volume Method in 2D
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• The integral equation, in turn, has no restriction to 
the differentiability of the solution:

• Gauss's theorem converts the volume integral into a surface 
integral
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Finite Volume Method in 2D II
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• An essential step for the construction of the numerical 
scheme is to consider integral mean values in each cell:

• This leads to

• Thus, the spatial operator is defined as
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Finite Volume Method in 2D II

Fall 2023



Introduction to Computational Fluid 
Dynamics in High Performance Computing

• To construct a numerical scheme, the evaluation of the 
surface integral is simplified by requiring piecewise constant 
edges of the control volume.
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Control Volume
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• The whole domain is split into N overlapping tetrahedral 
elements.
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Computational Grid
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• Using a simplified geometry, the surface integral can be 
replaced by a sum over all edges

• The integration is performed via a numerical integration, e.g., 
Gaussian integration. The integration point is located at the 
side center, this is sufficiently accurate for 1. and 2. order

• eij: cell edges of the cell Vi
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Solving the Surface Integral
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• The Euler eq. are rotationally invariant:
• The rotational matrix T is defined as

• Replacing the phys. by the num. flux:
• Thus, the residual is given by
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Reduction to 1D Riemann Problems: Rotation
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Steps of the flux computation:
1. Rotating the state at each cell 

into the local coordinate system
2. Computing the 1D Riemann 

Problem at each edge
3. Rotating the fluxes back into the 

global coordinate system
4. Computing the residual for each cell
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Flux Computation in 2D - Summary
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• After the computation of the residuum, the temporal integral 
has to be solved.

• Following the method-of-lines approach, the temporal and 
spatial integration can be seperated

• For first order methods, the left-hand Riemann sum results in
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Temporal Discretization
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• An explicit time discretization is conditional stable.
• The time step restriction can be visualized in 1D:

• The flux computation requires a constant state at the cell 
edges. This is only satisfied, if no wave reaches the next cell 
during one step.
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Time Step Size – the CFL Condition
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• The maximal time step is limited by the time of the fastest 
wave propagation through the cell:

• In practice, the time step is multiplied by a factor, the CFL 
number (named after Courant, Friedrichs und Levy), thus
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Determination of the Maximal Time Step
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• The discretization influences the maximal possible time step.
• The order of the spatial discretization determines the order of 

the temporal integration.
• For higher dimensions, the time step is reduced by multi-

dimensional effects.
• The maximal CFL number depends on the chosen time and 

spatial integration method and is defined by numerical 
experiments or given in tables.
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Impact of the Discretization on the Time Step
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Boundary Conditions: Ghost Cells
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• Ghost cells are used for boundary conditions. 
• The BC value is inserted into the flux computation, enforcing 

the boundary conditions weakly.
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Physical Boundary Conditions
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• Walls 
• Symmetry
• Periodic
• Freestream
• Inflow-/Outflow (Super-/subsonic)
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Boundary Conditions: Euler or Slip Wall

Fall 2023

• This boundary condition acts as a symmetry condition.
• Symmetric problems can be cut at symmetry planes, reducing 

the domain and saving computational time.
• Euler eq. are inviscid; heat flux is zero
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Boundary Conditions: Periodic Sides
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• Infinite domain, e.g., channel flow
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Outlook: Is first-order enough?

solution

Mean value

Real value at cell
interface

Fall 2023

--> Problem: Values at cell interfaces differ from the real 
solution.
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FV-Discretization

solution

Mean value

Problem: Values at cell interfaces differ from the real solution. 
 1st order

Real value at cell
interface
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Reconstruction in 1D (MUSCL)
Ansatz: Instead of a constant approximation in each cell, a linear distribution is 

used. The integral value must be preserved.

Problem: The FV method has no possibility to save interior cell information beside 
the mean value.
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Reconstruction in Space: Slope Calculation
Process: Only cell mean values are saved. The slope in each cell is calculated by 

using adjoined cells. Two neighbors allow the computation of two 
gradients (s1,s2).

Problem: Which one is the correct gradient to reconstruct the cell value?
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Reconstruction: TVD
TVD-Property (Total Variation Diminishing)

Sufficiency (A. Harten)
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Interpretation of TVD
TVD:
-Limitation of gradients, no new maxima or minima

i 1i1i

2s1s

Artificially, new 
maxima

The reconstructed slope has to be limited.  Limiter 
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Reconstruction in 1D: Limiter

1. Minmod-function

2. Sweby‘s slope calculation

 11 , minmod 
1

 


 iiiii uuuu
x

s

 











else

abbaifb

abbaifa

ba

0

0,

0,

, minmod

      b,ka,kb,asign(a)b,ask minmodminmodmax
21  kmit

Fall 2023



Introduction to Computational Fluid 
Dynamics in High Performance Computing

HPCFD04 – Finite Volume Method 60

Reconstruction in 2 and 3 Dimensions

Cartesian Grid:

Each dimension is independent of the other. The 1D-scheme can be applied 
for each dimension.

Unstructured Grid:

More complex. Dimensions cannot be separated. More complex slope and 
limiter calculation.
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Reconstruction: Unstructured Grid
Barth & Jespersen:
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Methods of Second Order in Time

Two different methods are possible:

1. „Method of Lines“
– Separation of space and time integration
– Time integration can easily exchanged
– Time and space order independent
– Easy to implement

2. „Space-Time-Expansion“
– Time order equals space order 
– Depends on equation system
– Difficult to implement

Fall 2023
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Method of Lines

The time discretization is independent of the spatial discretization.
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Method of Lines – Implementation

1. Spatial operator R is computed with arbitrary numerical scheme

2. Solving the ordinary differential equation (ODE) by a method for initial 
value problems. Typical methods are explicit Runge-Kutta methods or 
implicit BDF methods. A second order method is the improved Euler-
scheme.
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Space-Time-Expansion
Solve following equation:
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First order methods use the rectangle method. For second order, a more accurate 
integration method has to be used, e.g. the midpoint method.
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Space-Time-Expansion: Cauchy-Kovalevskaya-
Procedure

The unknown state is approximated by a Taylor series 2/1)(
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The cell local differential equation is:

  0 ufu t

The idea of the Cauchy-Kovalevskaya procedure is to express the time derivative by 
the differential equation.

 ufu t 
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Space-Time-Expansion
The unknown state at the cell midpoints is expressed by a Taylor series in 
space and time:
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The spatial derivative is approximated by the reconstruction step. The time 
derivative is computed by the Cauchy-Kovalevskaya procedure. This allows to 
compute the state at each point of a space time element for the flux computation.
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Slope Calculation on Unstructured Grids

The matrix         can be computed for each cell in a preprocessing step. The reconstruction
simplifies to a matrix-vector operation per time step.
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Limiter on Unstructured Grids

i

j=1

j=2

j=3

Barth und Jespersen:

Requires:

1. Maxima of all four cells:

2. Minima of all four cells:

3. Vectors from barycenter to each node:
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Limiter

Computing the limitation         for each node:
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The limited slope is
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