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Basic equations

Conservation or transport equations

• Conservation equations for:
• Mass
• Momentum
• Energy

• Transport equations for:
• Concentrations
• Turbulence
• etc.

System of non-linear, coupled, partial differential equations of convection-diffusion type

𝜕𝜑

𝜕𝑡
+ 𝑈𝑗

∗ 𝜕𝜑
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− Γ
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𝜕𝑥𝑗
2 − 𝑓 = 0

Time derivative

Convection term

Diffusion term

Source term
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Computational domain and boundary conditions

For unsteady problems also Initial Conditions are required

Boundary conditions:
Dirichlet type (fixed values)
Neumann type (gradient type b.c.)

Basic equations

Computational domain 

boundary
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Usually used solution methods:

– Finite Difference Methods (FDM)

– Finite Volume Methods (FVM)

– Finite Element Methods (FEM)

Other Methods
– Spectral methods
– Lattice Boltzmann Methods
– Boundary Element Methods
– Etc.

Solution methods



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 FEM 5

Solution methods
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Solution methods

Accuracy

Fl
ex

ib
ili

ty

Finite Elements (FEM)

Finite Volumes (FVM)

Finite Differences (FDM)

Spectral methods

Various element types, 
various approximations

Conservative formulation

High order approximations
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General procedure

Definition of 
describing equations

Dividing of the domain 
into Finite Elements

Definition of the local 
approximation of the 

solution quantities

Discrete form of the 
describing equations

Assembling of the 
relevant matrices

Solution of the system 
of linear equations

Solution
(Linear  equations)

Definition of 
Computational domain,

Boundary conditions 
Initial conditions

Convergence checkUpdate of 
coefficients

Solution
(non-linear 
equations)

1 2 3 4

5 6 7 8
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Example: Navier-Stokes equations, steady-state, incompressible

𝑢
𝜕𝑣
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𝜕𝑦2

𝜕𝑢
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𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

Definition of describing equations 

• Coupled 
• Non-linear
• 2. order for velocities
• 1. order for pressure

1

Mass conservation:

Momentum conservation:
(x-direction)

Momentum conservation:
(y-direction)
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+
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Definition of describing equations 1

𝜕ui
𝜕t

+ uj
𝜕ui
𝜕xj

= −
1

𝜌

𝜕p

𝜕xi
+ 𝜈

𝜕2u𝑖
𝜕xj

2

Navier-Stokes equations, 3D, unsteady,  incompressible

Mass conservation

Momentum conservation

𝜕u𝑖
𝜕xi

= 0
In Index form

Summation 
convention
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Definition of describing equations 1

𝜕ui
𝜕t

+ uj
𝜕ui
𝜕xj

= −
1

𝜌

𝜕p

𝜕xi
+ (𝜈 + 𝜈𝑡)

𝜕2u𝑖
𝜕xj

2

Mass conservation

Momentum conservation

𝜕u𝑖
𝜕xi

= 0

𝑣𝑡 = 𝑐𝜇
𝑘²
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+ 𝑢𝑖

𝜕𝑘

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

𝜈𝑡
𝜎𝜀

𝜕𝑘

𝜕𝑥𝑖
+ 𝜈𝑡

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜀

𝜕𝜀

𝜕𝑡
+ 𝑢𝑖

𝜕𝜀

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

𝜈𝑡
𝜎𝜀

𝜕𝜀

𝜕𝑥𝑖
+ 𝑐1𝜀

𝜀

𝑘
𝜈𝑡

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
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c c ck    = = = = =0 09 10 13 144 1921 2. ; . ; . ; . ; .

Example: Turbulent flow

Turbulent viscosity

Turbulent kinetic energy

Dissipation rate

Model constants

𝜕𝜑

𝜕𝑡
+ 𝑢𝑗

𝜕𝜑

𝜕𝑥𝑗
− Γ

𝜕2𝜑

𝜕𝑥𝑗
2 − 𝑓 = 0Advection – diffusion equation
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Example backward-facing step

Definition of computational domain and boundary conditions2

Computational domain

Boundary

Inlet

Wall

Wall

Wall

Outlet
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Far-field boundary

Outlet 

Inlet velocity

Wall

Definition of computational domain and boundary conditions2
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General procedure

Definition of 
describing equations

Dividing of the domain 
into Finite Elements

Definition of the local 
approximation of the 

solution quantities

Discrete form of the 
describing equations

Assembling of the 
relevant matrices

Solution of the system 
of linear equations

Solution
(Linear  equations)

Definition of 
Computational domain,

Boundary conditions 
Initial conditions

Convergence checkUpdate of 
coefficients

Solution
(non-linear 
equations)

1 2 3 4

5 6 7 8
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Various types of elements

Dividing of the domain into Finite Elements3
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Various types of 
elements can be used

Very flexible 
discretization method

Dividing of the domain into Finite Elements3

2D elements

3D elements
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Various types of 
elements can be used

Very flexible 
discretization method

Dividing of the domain into Finite Elements3

2D elements

3D elements
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Zienkiewicz & Taylor (2000)

Example: Flow around a jet

Elements

Grid concentration in 
regions with steep gradients
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Simple grids 

Source: Taylor & Hughes

Elements

Curvilinear elements
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Pijk(xi,yj,zk) Example program
delx = Lx/(nx-1)

dely = Ly/(ny-1)

delz = Lz/(nz-1)

do i = 1,nx

do j = 1,nz

do k = 1,nz

x (i,j,k) = delx*(i-1)

y (i,j,k) = delx*(j-1)

z (i,j,k) = delz*(k-1)

u (i,j,k) = 0.0

end do

end do

end do

All grid lines are straight lines parallel to the coordinate axis
All cells are rectangular
All angles are right angles
Partial differentials can be build in 1D

Is defined by 1D arrays
real     x(nx), y(ny), z(nz), u(nx,ny,nz)

Cartesian Grid

Insertion: Characteristic grid structures

For FDM
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Discretization
results in band matrices

2D: 5 bands
3D: 7 bands 

Characteristic grid structures

x

y

x

y

z

2D 3D

Number of 
columns depend 
on the number of 
neighbours
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Structured grids
2D 3D
Two regimes of grid lines three
Cells with four corners Hexahedron
Each grid point has 4 neighbors six

Body-fitted coordinates by using
curvilinear  grid lines

Unstructured grids

No regimes of grid lines
Cells can have different shapes 
e. g. triangles … Prisms...
No of neighbors are different

Characteristic grid structures
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Each block consists of 
a structured grid

On the block boundaries 
the grid points are identical 
between neighbor blocks

Grid lines should be smooth 
on block boundaries

Advantages:
Suitable for complex geometries
Easy to parallelize

Turbine blades
(Geometry is periodic)

Bock-structured grids



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 FEM 23

„node”-numbers
“element”-numbers

1 2 3 4 5 6 7 8 9
A 3 6 2 2 1 1 1 7 7
B 2 2 5 7 7 2 8 8 9

„local“
nodes

C 4 3 4 5 2 6 7 9 5
„global
nodes

Connectivity table

A

B
C

Unstructured grids
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Unlike for structured meshes, where band matrices occur, for unstructured meshes, 
unstructured, sparse matrices arise instead. 

Matrices are not stored completely, instead only the relevant parts are stored, for 
this special storage technologies exists.

Unstructured grids

Structure of the 
matrices is symmetric
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General procedure

Definition of 
describing equations

Dividing of the domain 
into Finite Elements

Definition of the local 
approximation of the 

solution quantities

Discrete form of the 
describing equations

Assembling of the 
relevant matrices

Solution of the system 
of linear equations

Solution
(Linear  equations)

Definition of 
Computational domain,

Boundary conditions 
Initial conditions

Convergence checkUpdate of 
coefficients

Solution
(non-linear 
equations)

1 2 3 4

5 6 7 8
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In each element an approximation for the required quantity  is defined.  
This means it is defined, how the quantity behaves within the element.

Examples: 

2D linear: ( )

   x y x y, = + +1 2 3

( ) 2

65

2

4321 yxyxyxy,x +++++=


Definition of approximation

2D quadratic:

The coefficients are the solution
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2

210 xx ++=


Examples: x10 +=


yx 210 ++=


xyyxyx 5

2

4

2

3210 +++++=


xyyx 3210 +++=


Definition of approximation
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The approximations must fulfill certain continuity conditions:

1.) Conforming elements

The approximation on neighbor element boundaries must be identical

These are called conforming elements. 

Only conforming elements are considered here.

EXAMPLE: Non-conforming  velocity approximation

Because the approximations are different in each element, this acts 
as a source or sink between the elements

Definition of approximation
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2.)  Cn-1 continuity requirement

If the integrant contains derivatives of n-th order, 
the approximations have to be continuous up  to derivatives of 
(n-1)-th order. 

For the Navier-Stokes equations this means:

Velocities are 2nd order, pressure 1st order

 Velocity approximation must be continuous and differentiable 

 Pressure approximation must be continuous

(The continuity requirements can be reduced by applying Galerkin method  
by means of Green-Gauss theorem, see later) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

Definition of approximation
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1-D Example:

element

x




The continuity can be satisfied easier when expressing the approximation by 
node values

( )
   
   = + −

−

−

1 2 1 1

2 1

( )x x

x x

1 2

To fulfill the Cn-1 continuity requirements the polynomial approximations are not 
suitable. Between the coefficients of neighboring elements constraints has to be 
satisfied.

ҭΦ = 𝛼0 + 𝛼1𝑥

It is much easier to use node values instead of coefficients to prescribe the 
approximation 

Linear Approximation:

Definition of approximation

Neighbor 
element
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 
  ( ) ( ) ( ) ( ) ( )e e e e eN N= +1 1 2 2

N are the shape or trial functions (der index (e) means that it is related to the local 
element numbering).

Introducing the dimensionless coordinate  =
−

−

x x

x x

1

2 1

the shape functions are  

=−= )e(2)e(1 Nund1N

x1 x2

N
11

N1(e) N2(e)

Generalized: ( ) ==  Knoten,...,1k)x(Nx i

kk

i



Linear Approximation:

The shape function characterize the influence of a node 
value to the solution. 
The shape function must be 1 in the corresponding node 
and must be 0 in all other nodes

Definition of approximation

and 

No nodes
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( ) ==  hlKnotenanza,...,1k)x(Nx i

kk

i



k

Nk

By  a global numbering of all nodes the local approximations can be put together to a 
global approximation.

The global shape functions are composition of the local shape functions

Example: 1D linear

Definition of approximation

Number of nodes
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( ) ==  Knoten,...,1k)x(Nx i

kk

i

Definition of approximation
no nodes
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1

For 2D linear triangles the following shape function for node k is obtained 

k

and the global shape functions 
for node k are given here

Definition of approximation
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The introduction of global shape functions simplifies the formal description, 

For programming only the element shape functions are usually used. 

This is explained at a 1D example.

elements with local numbering

Elements with global numbering

Applied is a linear approximation

Definition of approximation
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Approximation for element 1:

Approximation for element 2:


  

  

( )

( )

e

e

x

x

= +

= +

1 2

1 2

As already mentioned with these approximations it is difficult to satisfy the continuity 
requirements. There are constrains between the coefficients. Therefore the 
approximations are expressed in node values

1 2
( )

 
   ( ) ( ) ( ) ( )

( )

( ) ( )

e e e e
e

e e

x x

x x
= + −

−

−

1 2 1
1

2 1

This results in

for element 1:

for element 2:

( )

( )

   

   

   

   

( )

( )

e

e

x x

x x

x x

x x

= + −
−

−

= + −
−

−

1 2 1
1

2 1

2 3 2
2

3 2

Definition of approximation
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So the continuity is satisfied without additional measures. 

By introducing a dimensionless coordinate for each element: 

 =
−

−

x x

x x

e

e e

1

2 1

( )

( ) ( )

the approximation can be written in the form

 
    ( ) ( ) ( )( )e e e= − +1 21

 
  ( ) ( ) ( ) ( ) ( )e e e e eN N= +1 1 2 2

or with the shape functions 

Where the shape functions are defined as

=−= )e(2)e(1 Nund1N

Definition of approximation

and
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The continuity is automatically satisfied by using node values 

Element 1

x




1 2 3

Element 2

4 5

Definition of approximation

Example:
1D quadratic 

But differentiability 
is not yet obtained

This could be obtained by introducing also the derivatives on the 
nodes as generalized node values

Element 1

x




1 2

Element 2
This works, but it is very 
complicated in 2D and 3D
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If not Galerkin method is applied (reduction of continuity 
requirements!) for higher order differential equations mostly the higher 
order differential equation is transformed into a system of differential 
equation of first order.

Example: Basic equation

Introduction of function g 𝑔 =
𝜕𝑢

𝜕𝑥

Resulting system of 1st order equation

𝜕𝑔

𝜕𝑥
+ 𝑓 = 0

𝜕𝑢

𝜕𝑥
− 𝑔 = 0

𝜕2𝑢

𝜕𝑥2
+ 𝑓 = 0

By introducing the vorticity vector the Navier-Stokes equations can be transferred 
into a system of 6 equations of first order
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General procedure

Definition of 
describing equations

Dividing of the domain 
into Finite Elements

Definition of the local 
approximation of the 

solution quantities

Discrete form of the 
describing equations

Assembling of the 
relevant matrices

Solution of the system 
of linear equations

Solution
(Linear  equations)

Definition of 
Computational domain,

Boundary conditions 
Initial conditions

Convergence checkUpdate of 
coefficients

Solution
(non-linear 
equations)

1 2 3 4

5 6 7 8
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


=








 = F

x y z x
x y z dxdydz













 


, , , , ,...., , , min

2

2

In opposition to the Finite Difference Method, where a direct discretization of the 
differential equations is undertaken, the FEM is based on a variation principle:

 is the solution function looked for. It can be a single function or a set of unknown 
functions (e. g. for the Navier-Stokes equations  stands for the velocity components 
and the pressure).

In structural mechanics an equivalent variation principle to the differential equation 
formulation exists (e. g. principle of virtual work).

For the Navier-Stokes equations an equivalent variation principle is not known! As a 
consequence an approximation must be used.

Discrete form of the describing equations
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𝐷 Φ = 𝑓 𝑖𝑚 𝐺𝑒𝑏𝑖𝑒𝑡 Ω

ҭΦ = ෍

𝑘=1

𝑛

𝛼𝑘 ⋅ 𝜙𝑘

𝜀 = 𝐷( ҭΦ) − 𝑓

න

Ω

𝑤𝑘 ⋅ 𝜀𝑑Ω = න

Ω

𝑤𝑘 ⋅ (𝐷( ҭΦ) − 𝑓)𝑑Ω = 0 < 𝑘 = 1, . . . , 𝑛 >

Method of weighted residuals (MWR)

Partial Differential equation (PDE)

Approximation of the solution

𝜙𝑘 . . . 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
𝛼𝑘…𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 (𝑙𝑜𝑜𝑘𝑒𝑑 𝑓𝑜𝑟)

Introduced into the  in PDE results in a residuum

Postulated:

linear independent weighting functions

Discrete form of the describing equations

There are several methods to choose the weighting functions
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 2d


= min






k
d



 = 0

w k

k
=





Least Square Method

For the LSM it is postulated 

This is equivalent to

Compared to the general MWR approach this results in the following weighting functions 

Discrete form of the describing equations

Note: Using LSM no reduction of the continuity requirements can be obtained by 
partial integration (Green-Gauss theorem)
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Galerkin Formulation

This is the mostly used formulation for the Navier-Stokes equation.

The weighting function are chosen equal to the shape functions

kk Nw =

This results in a variation principle




= 0dNk

Discrete form of the describing equations
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( ) ( )
( )
( )

w x x x x
for x x

for x x
dxk

i i

k

i i

k i i

k

i i

k
= − − =



 =





=
−



  
0

1

( )   − = = x x di i

k

xi
k



 0

Collocation method

Using the collocation method Dirac-functions are used as weighting functions

This is equivalent to the postulation, that the residuals at given points (collocation 
points) is zero.

Discrete form of the describing equations
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w
in D

out of D

k m

m

=




1

0

Subdomain Method

The weighting function is chosen to be 1 in the  subdomain and 0 outside the 
subdomain

This means the residuum zero in an „integral“ way in the subdomain.

The subdomain method is equivalent to the Finite Volume Method (FVM)

Discrete form of the describing equations

The weighting function is given as 
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General procedure

Definition of 
describing equations

Dividing of the domain 
into Finite Elements

Definition of the local 
approximation of the 

solution quantities

Discrete form of the 
describing equations

Assembling of the 
relevant matrices

Solution of the system 
of linear equations

Solution
(Linear  equations)

Definition of 
Computational domain,

Boundary conditions 
Initial conditions

Convergence checkUpdate of 
coefficients

Solution
(non-linear 
equations)

1 2 3 4

5 6 7 8
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Based on the method of weighted residuals

w d k no of nodesk 


=  =  0 1,...,

This results in a linear system of equations (LSE)

bA =

w d w dk k e e

e

  



= 
( ) ( )

( )

the integral can be expressed by the sum of the integrals over all elements

The matrix A can be assembled from the element matrices, also the vector of the 
right-hand side is calculated from all element contributions

Vector  are the node values, searched for.

Assembling of the relevant matrices

Calculation of the element matrices
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The calculation of the element matrices will be shown later at an example. 

 ==
)e()e(

bbundAA

The element matrices depend on the equations, the types of elements, 
approximations etc. 

For linear PDEs and rather simple types of elements the element matrices can be 
calculated directly. For non-linear PDEs and/or more complex elements the 
element matrices must be calculated numerically.

Assembling of the relevant matrices
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A

b

The global matrix is assembled from 
the local element matrices under 
consideration of the global node 
numbering

Assembling of the relevant matrices
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1 0 0 0

21 22 23 24

31 32 33 34

41 42 43 44

1

2

3

4

2

3

4

a a a a

a a a a

a a a a

b

b

b

fix





































=






































 1 = fix



















=







































4

3

2

1

4

3

2

1

44434241

34333231

24232221

14131211

b

b

b

b

aaaa

aaaa

aaaa

aaaa
















Example: Diriclet b.c.

Node value 1 is given

Through the assembly of the 
element matrices one obtains the 
global linear system of equations

Dirichlet boundary conditions 
must be introduces into this LSE

Neuman boundary conditions 
result in an additional contribution 
to the global matrix

Introduction of boundary conditions
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General procedure

Definition of 
describing equations

Dividing of the domain 
into Finite Elements

Definition of the local 
approximation of the 

solution quantities

Discrete form of the 
describing equations

Assembling of the 
relevant matrices

Solution of the system 
of linear equations

Solution
(Linear  equations)

Definition of 
Computational domain,

Boundary conditions 
Initial conditions

Convergence checkUpdate of 
coefficients

Solution
(non-linear 
equations)

1 2 3 4

5 6 7 8

Linearization
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Stokes-Linearization:  Convection term is completely taken from the 
previous iteration step

Picard-Iteration:

Newton-Iteration: fast convergence, small convergence radius

Basic equations













+




+






−=




+




+




2

2

2

2

y

v

x

v

y

p1

y

v
v

x

v
u

t

v

𝑢
𝜕𝑢

𝜕𝑥
≈ 𝑢𝑜𝑙𝑑

𝜕𝑢𝑛𝑒𝑤

𝜕𝑥













+




+






−=




+




+




2

2

2

2

y

u

x

u

x

p1

y

u
v

x

u
u

t

u
Linearization

Non-linear terms

Robust, slower convergence,
large convergence radius
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0f
xx

U
2

j

2

j

*

j =−



−





 
=

=
8

1l

^

l

^

lN

Basic equation

Approximation within 
the element 1

2
3

4

5
6

7

8

Residuum f
xx

U
2

j

^

2

j

^

*

j −



−




=



Method of weighted 
residuals  



=
Elemente

)e(kk dwdw

Steady-state convection-diffusion equation
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0dNdN
Elemente iEl

)e(kk ==  


Galerkin formulation kk Nw =

f
x

N

x

N
U

^
l

2

j

l2

j

l
*

j −

















−




=with

0df
x

N

x

N
UN

Elemente

^
l

2

j

l2

j

l
*

j

iEl

k =













−


















−




 

Steady-state convection-diffusion equation

elements
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General procedure

Definition of 
describing equations

Dividing of the domain 
into Finite Elements

Definition of the local 
approximation of the 

solution quantities

Discrete form of the 
describing equations

Assembling of the 
relevant matrices

Solution of the system 
of linear equations

Solution
(Linear  equations)

Definition of 
Computational domain,

Boundary conditions 
Initial conditions

Convergence checkUpdate of 
coefficients

Solution
(non-linear 
equations)

1 2 3 4

5 6 7 8

Time integration
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The time discretization is done 
by means of finite differences 
in time, FEM is used only in 
space Explicit or implicit 

Euler (1. order)

Crank Nicholson (2. order)

3 Level Schemes
explicit order implicit
(2. order)

Time discretization

explicit implicit

implicitexplicit
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0f
xx

U
t 2

j

2

j

*

j =−



−




+





 
=

=
8

1l

^

l

^

lN

Basic equation

Approximation within 
the elements

1
2

3

4

5
6

7

8

Residuum f
xx

U
t 2

j

^

2

j

^

*

j

^

−



−




+




=



MWR  


=
Elemente

)e(kk dwdw

Unsteady convection-diffusion equation

Galerkin formulation kk Nw =

elements
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0dNdN
Elemente iEl

)e(kk ==  


Galerkin formulation 

f
x

N

x

N
UN

^
l

2

j

l2

j

l
*

j

^
l −


















−




+= With the residuum

0df
x

N

x

N
UNdNN

Elemente

^
l

2

j

l2

j

l
*

j

iEl

k
^

iEl

lk =













−


















−




+














  

Unsteady convection-diffusion equation

Discretized equations

elements

l
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Still a linear system 
of equations must 
be solved

=> In FEM usually an implicit time descretization is applied
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w
x

dxk  


 

2

2

2

0

2

0




−








 =

Boundary conditions

(0)=1;    ()=1.54308

Exact solution:   = +−c e c ex x

1 2 with  c1 = c2 = 0.5

MWR

 


  

2

2

2 0 05
x

− = = .

Approximation
 
 = k kN

In the direct form the approximation 
must be continuous and differentiable.

The requirement can be reduced by 
applying Galerkin method and the Green 
Gauss theorem

Example: 1D Helmholtz equation
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w Nk k=

Weighting functions  =  Shape functions

Cn-1- continuity

Integral contains derivations 2. order  => approximation continuous and differentiable  

N
N

x
N dxk

l
l l


 

2

2

2

0

2

0−


















 =


k and l count from 1 to the no of nodes n 

By applying Green-Gauss theorem the continuity requirements can be reduced by 
one order.

Example: 1D Helmholtz equation

Galerkin formulation 

Node valuesSystem matrix (n x n)
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Green-Gauss theorem

+



−=




  

 

ded
x

d
x

i

ii
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






  

N

x

N

x
N N dx A

k l
k l l+



















 = =

2

0

2

0
 

The resulting surface integral can be neglected since Diriclet boundary conditions are 
given. For Neuman boundary conditions the surface integral has to be calculated and 
results in an addition to the system matrix. 

In the weak formulation the integral contains only derivatives of first order. Therefor 
only C0-continuity is required. (This is the big advantage of the Galerkin formulation)

Solution with 4 linear elements

Example: 1D Helmholtz equation

Weak formulation

(Change of sign!!)
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Element matrix

Dimensionless coordinate

L x xi i= −+1
 =

−x x

L

i
with

Linear shape functions

N Ni i= − =+1 1 ;








  

N

x

N

x
N N dx A

k l
k l

x

x

l e

i

i

+






















= =
+

 2
1

0
 ( )

Calculation of the global matrix from the local element matrices

Ni

xi xi+1

Ni+1

Example: 1D Helmholtz equation
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A
L

N N
N N L d

e
k l

k l( )
= +









  

1
2

2

0

1







 
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




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





N

x

N
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= =
1
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Tis results in

( ) ( )

( ) ( )
A
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N
L N

L

N N
L N N

L

N N
L N N

L

N
L N

d
e( )
=









 +









 +









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







 +





















1 1

1 1

1 2

2 1 2
1 2

2 1 2

1 2
2 1 2

2 2

2 2 20

1































and

In components

Example: 1D Helmholtz equation
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𝑤𝑖𝑡ℎ
𝜕𝑁1

𝜕𝜉
= −1 𝑎𝑛𝑑

𝜕𝑁2

𝜕𝜉
= 1

𝑎𝑛𝑑 න

0

1

𝜉2𝑑𝜉 =
1

3
; න

0

1

1 − 𝜉 𝜉𝑑𝜉 =
1

6
𝑎𝑛𝑑 න

0

1

(1 − 𝜉)2𝑑𝜉 =
1

3

With  L = 0.5   and  = 0.5  this results in the element matrix

A L

L

L

L

L

L

L

L
e( ) . .

. .
=

+ − +

− + +

















=
−

−











1

3

1

6
1

6

1

3

2 042 1979

1979 2 042

2 2

2 2

 

 

Example: 1D Helmholtz equation
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1 0 0 0 0

1979 4 083 1979 0 0

0 1979 4 083 1979 0

0 0 1979 4 083 1979

0 0 0 0 1
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











 
 1 51 154308= =. .Introduction of the boundary conditions

Final equation

Assembling of the 
global matrix























−

−−

−−

−−

−

=

042.2979.1000

979.1083.4979.100

0979.1083.4979.10

00979.1083.4979.1

000979.1042.2

A

Example: 1D Helmholtz equation
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Solution

node numerical exact

1 1 1

2 103092 103141

3 112694 112763

4 129414 129468

5 154308 154308

. .

. .

. .

. .

Example: 1D Helmholtz equation
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Solution using two quadratic elements

Shape functions

N

N

N

e

e

e

1

2

3

1 1 2

4 1

1 2

( )

( )

( )

( )( )

( )

( )

= − −

= −

= − −

 

 

 

In analogy to the linear elements the element 
matrices can be calculated

Example: 1D Helmholtz equation
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Element matrix

A

L
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




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7

3

4

30

8

3

2
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1

3 30
8

3

2

30

16

3

16

30

8

3

2

30
1

3 30

8

3

2

30

7

3

4

30

Both element matrices will be summed up and the boundary conditions must be 
introduced.

Example: 1D Helmholtz equation
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Global matrix

SolutionExample: 1D Helmholtz equation

Continuous, but 
not differentiable
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For linear PDEs and rather simple types of elements the element matrices can be calculated directly. For 
non-linear PDEs and/or more complex elements the element matrices must be calculated numerically.

Gauss Integration
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Galerkin method: with

„weak“ Formulation

Picard-Iteration of 
the convection term

Method of weighted residuals (MWR)

Transport equation
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Minimum continuity requirements:

Continuous approximation for velocity components

Discontinuous approximatio for pressure

Tri-linear  Hexahedron 
for velocity components 

Constant pressure

Navier-Stokes equation
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The approximations for velocity and pressure cannot be 
defined independently.

For the Navier-Stokes equation the velocity components can 
be interpreted as main variables (degrees of freedom),

The pressure can be seen as constrains

It is necessary to have more degrees of freedom as constrains

To guaranty a unique solution, the approximations must fulfill the LBB condition, 
this condition is very complicated and cannot be discussed here.

LBB Condition

As a rule of thumb, it can be said, that the approximation of the velocities 
should be one order higher compared to the approximation of the pressure 

Ladyzhenskaya–Babuška–Brezzi condition
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Example of elements, 
satisfying the LBB condition
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LBB Condition

Elements failing the LBB 
condition, but still 
performing reasonable

Problem with decoupling of different pressure modes
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Checkerboard oscillation

LBB Condition

Problem with decoupling of different pressure modes

Cure: Smoothing of the pressure
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FD discretization

hyperbolic
elliptic
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"Streamline-upwind" Petrov-Galerkin Method 

0dNk =


f
x

ˆ

x

ˆ
U

t

ˆ
2

j

2

j

*

j −



−




+




=Residuum:

Galerkin:

Petrov-Galerkin: 0dN
~k =



kkNˆ =Approximation:

N k

~
N k

Upwind discretization



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 FEM 84















+

=

2RefürN

2Refür''k
UU

U

x

N
N

N
~

)e(k

)e(

ii

j

j

k
k

k


=

hU
Re

)e(
)e(

( ) 2/hRe/2)2/(Recoth''k )e()e( −=

SUPG weighting function

Upwind discretization



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 FEM 85

Example: Ship propeller
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Tip vortex

Prediction of vortex cavitation

Example ship propeller
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Tip vortex center Local grid refinement

Example ship propeller



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 FEM 88

Propeller skew

Separation point

Cavitation limit

Downstream field

Example ship propeller
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Summary

• Finite Element Method is very flexible 

• Different element types (tetraether, hexaeder, curvilinear elements, …..)

• Different approximation (linear, quadratic …..)

• Unstructured grids

• Mostly used: Galerkin method

• Green-Gauss theorem

• Reduction of continuity requirements 

• Streamline upwind Petrov Galerkin method for convection dominated flows

• Skew-symmetric weighting function according to flow direction

Error estimation possible

Adaptive grid refinement possible
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