
Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 1

Finite Elements for Computational Fluid Dynamics

Dr. Albert Ruprecht

Former: Institute of Fluid Mechanics
and Hydraulic Machinery

University of Stuttgart

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 2

Basic equations

Conservation or transport equations

• Conservation equations for:
• Mass
• Momentum
• Energy

• Transport equations for:
• Concentrations
• Turbulence
• etc.

System of non-linear, coupled, partial differential equations of convection-diffusion type

𝜕𝜑

𝜕𝑡
+ 𝑈𝑗

∗ 𝜕𝜑

𝜕𝑥𝑗
− Γ

𝜕2𝜑

𝜕𝑥𝑗
2 − 𝑓 = 0

Time derivative

Convection term

Diffusion term

Source term
1 2 3 4

4

3

2

1

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 3

Computational domain and boundary conditions

For unsteady problems also Initial Conditions are required

Boundary conditions:
Dirichlet type (fixed values)
Neumann type (gradient type b.c.)

Basic equations

Computational domain

boundary

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 4

Usually used solution methods:

– Finite Difference Methods (FDM)

– Finite Volume Methods (FVM)

– Finite Element Methods (FEM)

Other Methods
– Spectral methods
– Lattice Boltzmann Methods
– Boundary Element Methods
– Etc.

Solution methods

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 5

Solution methods

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 6

Solution methods

Accuracy

Fl
ex

ib
ili

ty

Finite Elements (FEM)

Finite Volumes (FVM)

Finite Differences (FDM)

Spectral methods

Various element types,
various approximations

Conservative formulation

High order approximations

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 7

General procedure

Definition of
describing equations

Dividing of the domain
into Finite Elements

Definition of the local
approximation of the

solution quantities

Discrete form of the
describing equations

Assembling of the
relevant matrices

Solution of the system
of linear equations

Solution
(Linear equations)

Definition of
Computational domain,

Boundary conditions
Initial conditions

Convergence checkUpdate of
coefficients

Solution
(non-linear
equations)

1 2 3 4

5 6 7 8

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 8

Example: Navier-Stokes equations, steady-state, incompressible

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

Definition of describing equations

• Coupled
• Non-linear
• 2. order for velocities
• 1. order for pressure

1

Mass conservation:

Momentum conservation:
(x-direction)

Momentum conservation:
(y-direction)

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 9

𝜕u

𝜕t
+ u

𝜕u

𝜕x
+ v

𝜕u

𝜕y
+ w

𝜕u

𝜕z
= −

1

𝜌

𝜕p

𝜕x
+ 𝜈

𝜕2u

𝜕x2
+
𝜕2u

𝜕y2
+
𝜕2u

𝜕z2

𝜕v

𝜕t
+ u

𝜕v

𝜕x
+ v

𝜕v

𝜕y
+ w

𝜕v

𝜕z
= −

1

𝜌

𝜕p

𝜕y
+ 𝜈

𝜕2v

𝜕x2
+
𝜕2v

𝜕y2
+
𝜕2v

𝜕z2

𝜕w

𝜕 t
+ u

𝜕w

𝜕x
+ v

𝜕w

𝜕y
+w

𝜕w

𝜕z
= −

1

𝜌

𝜕p

𝜕z
+ 𝜈

𝜕2w

𝜕x2
+
𝜕2w

𝜕y2
+
𝜕2w

𝜕z2

𝜕u

𝜕x
+
𝜕v

𝜕y
+
𝜕𝑤

𝜕z
= 0

Definition of describing equations 1

𝜕ui
𝜕t

+ uj
𝜕ui
𝜕xj

= −
1

𝜌

𝜕p

𝜕xi
+ 𝜈

𝜕2u𝑖
𝜕xj

2

Navier-Stokes equations, 3D, unsteady, incompressible

Mass conservation

Momentum conservation

𝜕u𝑖
𝜕xi

= 0
In Index form

Summation
convention

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 10

Definition of describing equations 1

𝜕ui
𝜕t

+ uj
𝜕ui
𝜕xj

= −
1

𝜌

𝜕p

𝜕xi
+ (𝜈 + 𝜈𝑡)

𝜕2u𝑖
𝜕xj

2

Mass conservation

Momentum conservation

𝜕u𝑖
𝜕xi

= 0

𝑣𝑡 = 𝑐𝜇
𝑘²

𝜀

𝜕𝑘

𝜕𝑡
+ 𝑢𝑖

𝜕𝑘

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

𝜈𝑡
𝜎𝜀

𝜕𝑘

𝜕𝑥𝑖
+ 𝜈𝑡

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜀

𝜕𝜀

𝜕𝑡
+ 𝑢𝑖

𝜕𝜀

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

𝜈𝑡
𝜎𝜀

𝜕𝜀

𝜕𝑥𝑖
+ 𝑐1𝜀

𝜀

𝑘
𝜈𝑡

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝑐2𝜀
𝜀2

𝑘

c c ck    = = = = =0 09 10 13 144 1921 2. ; . ; . ; . ; .

Example: Turbulent flow

Turbulent viscosity

Turbulent kinetic energy

Dissipation rate

Model constants

𝜕𝜑

𝜕𝑡
+ 𝑢𝑗

𝜕𝜑

𝜕𝑥𝑗
− Γ

𝜕2𝜑

𝜕𝑥𝑗
2 − 𝑓 = 0Advection – diffusion equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 11

Example backward-facing step

Definition of computational domain and boundary conditions2

Computational domain

Boundary

Inlet

Wall

Wall

Wall

Outlet

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 12

Far-field boundary

Outlet

Inlet velocity

Wall

Definition of computational domain and boundary conditions2

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 13

General procedure

Definition of
describing equations

Dividing of the domain
into Finite Elements

Definition of the local
approximation of the

solution quantities

Discrete form of the
describing equations

Assembling of the
relevant matrices

Solution of the system
of linear equations

Solution
(Linear equations)

Definition of
Computational domain,

Boundary conditions
Initial conditions

Convergence checkUpdate of
coefficients

Solution
(non-linear
equations)

1 2 3 4

5 6 7 8

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 14

Various types of elements

Dividing of the domain into Finite Elements3

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 15

Various types of
elements can be used

Very flexible
discretization method

Dividing of the domain into Finite Elements3

2D elements

3D elements

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 16

Various types of
elements can be used

Very flexible
discretization method

Dividing of the domain into Finite Elements3

2D elements

3D elements

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 17

Zienkiewicz & Taylor (2000)

Example: Flow around a jet

Elements

Grid concentration in
regions with steep gradients

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 18

Simple grids

Source: Taylor & Hughes

Elements

Curvilinear elements

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 19

Pijk(xi,yj,zk) Example program
delx = Lx/(nx-1)

dely = Ly/(ny-1)

delz = Lz/(nz-1)

do i = 1,nx

do j = 1,nz

do k = 1,nz

x (i,j,k) = delx*(i-1)

y (i,j,k) = delx*(j-1)

z (i,j,k) = delz*(k-1)

u (i,j,k) = 0.0

end do

end do

end do

All grid lines are straight lines parallel to the coordinate axis
All cells are rectangular
All angles are right angles
Partial differentials can be build in 1D

Is defined by 1D arrays
real x(nx), y(ny), z(nz), u(nx,ny,nz)

Cartesian Grid

Insertion: Characteristic grid structures

For FDM

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 20

Discretization
results in band matrices

2D: 5 bands
3D: 7 bands

Characteristic grid structures

x

y

x

y

z

2D 3D

Number of
columns depend
on the number of
neighbours

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 21

Structured grids
2D 3D
Two regimes of grid lines three
Cells with four corners Hexahedron
Each grid point has 4 neighbors six

Body-fitted coordinates by using
curvilinear grid lines

Unstructured grids

No regimes of grid lines
Cells can have different shapes
e. g. triangles … Prisms...
No of neighbors are different

Characteristic grid structures

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 22

Each block consists of
a structured grid

On the block boundaries
the grid points are identical
between neighbor blocks

Grid lines should be smooth
on block boundaries

Advantages:
Suitable for complex geometries
Easy to parallelize

Turbine blades
(Geometry is periodic)

Bock-structured grids

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 23

„node”-numbers
“element”-numbers

1 2 3 4 5 6 7 8 9
A 3 6 2 2 1 1 1 7 7
B 2 2 5 7 7 2 8 8 9

„local“
nodes

C 4 3 4 5 2 6 7 9 5
„global
nodes

Connectivity table

A

B
C

Unstructured grids

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 24

Unlike for structured meshes, where band matrices occur, for unstructured meshes,
unstructured, sparse matrices arise instead.

Matrices are not stored completely, instead only the relevant parts are stored, for
this special storage technologies exists.

Unstructured grids

Structure of the
matrices is symmetric

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 25

General procedure

Definition of
describing equations

Dividing of the domain
into Finite Elements

Definition of the local
approximation of the

solution quantities

Discrete form of the
describing equations

Assembling of the
relevant matrices

Solution of the system
of linear equations

Solution
(Linear equations)

Definition of
Computational domain,

Boundary conditions
Initial conditions

Convergence checkUpdate of
coefficients

Solution
(non-linear
equations)

1 2 3 4

5 6 7 8

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 26

In each element an approximation for the required quantity  is defined.
This means it is defined, how the quantity behaves within the element.

Examples:

2D linear: ()

   x y x y, = + +1 2 3

() 2

65

2

4321 yxyxyxy,x +++++=


Definition of approximation

2D quadratic:

The coefficients are the solution

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 27

2

210 xx ++=


Examples: x10 +=


yx 210 ++=


xyyxyx 5

2

4

2

3210 +++++=


xyyx 3210 +++=


Definition of approximation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 28

The approximations must fulfill certain continuity conditions:

1.) Conforming elements

The approximation on neighbor element boundaries must be identical

These are called conforming elements.

Only conforming elements are considered here.

EXAMPLE: Non-conforming velocity approximation

Because the approximations are different in each element, this acts
as a source or sink between the elements

Definition of approximation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 29

2.) Cn-1 continuity requirement

If the integrant contains derivatives of n-th order,
the approximations have to be continuous up to derivatives of
(n-1)-th order.

For the Navier-Stokes equations this means:

Velocities are 2nd order, pressure 1st order

 Velocity approximation must be continuous and differentiable

 Pressure approximation must be continuous

(The continuity requirements can be reduced by applying Galerkin method
by means of Green-Gauss theorem, see later)

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2

Definition of approximation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 30

1-D Example:

element

x




The continuity can be satisfied easier when expressing the approximation by
node values

()
   
   = + −

−

−

1 2 1 1

2 1

()x x

x x

1 2

To fulfill the Cn-1 continuity requirements the polynomial approximations are not
suitable. Between the coefficients of neighboring elements constraints has to be
satisfied.

ҭΦ = 𝛼0 + 𝛼1𝑥

It is much easier to use node values instead of coefficients to prescribe the
approximation

Linear Approximation:

Definition of approximation

Neighbor
element

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 31

 
  () () () () ()e e e e eN N= +1 1 2 2

N are the shape or trial functions (der index (e) means that it is related to the local
element numbering).

Introducing the dimensionless coordinate  =
−

−

x x

x x

1

2 1

the shape functions are

=−=)e(2)e(1 Nund1N

x1 x2

N
11

N1(e) N2(e)

Generalized: () ==  Knoten,...,1k)x(Nx i

kk

i



Linear Approximation:

The shape function characterize the influence of a node
value to the solution.
The shape function must be 1 in the corresponding node
and must be 0 in all other nodes

Definition of approximation

and

No nodes

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 32

() ==  hlKnotenanza,...,1k)x(Nx i

kk

i



k

Nk

By a global numbering of all nodes the local approximations can be put together to a
global approximation.

The global shape functions are composition of the local shape functions

Example: 1D linear

Definition of approximation

Number of nodes

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 33

() ==  Knoten,...,1k)x(Nx i

kk

i

Definition of approximation
no nodes

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 34

1

For 2D linear triangles the following shape function for node k is obtained

k

and the global shape functions
for node k are given here

Definition of approximation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 35

The introduction of global shape functions simplifies the formal description,

For programming only the element shape functions are usually used.

This is explained at a 1D example.

elements with local numbering

Elements with global numbering

Applied is a linear approximation

Definition of approximation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 36

Approximation for element 1:

Approximation for element 2:


  

  

()

()

e

e

x

x

= +

= +

1 2

1 2

As already mentioned with these approximations it is difficult to satisfy the continuity
requirements. There are constrains between the coefficients. Therefore the
approximations are expressed in node values

1 2
()

 
   () () () ()

()

() ()

e e e e
e

e e

x x

x x
= + −

−

−

1 2 1
1

2 1

This results in

for element 1:

for element 2:

()

()

   

   

   

   

()

()

e

e

x x

x x

x x

x x

= + −
−

−

= + −
−

−

1 2 1
1

2 1

2 3 2
2

3 2

Definition of approximation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 37

So the continuity is satisfied without additional measures.

By introducing a dimensionless coordinate for each element:

 =
−

−

x x

x x

e

e e

1

2 1

()

() ()

the approximation can be written in the form

 
    () () ()()e e e= − +1 21

 
  () () () () ()e e e e eN N= +1 1 2 2

or with the shape functions

Where the shape functions are defined as

=−=)e(2)e(1 Nund1N

Definition of approximation

and

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 38

The continuity is automatically satisfied by using node values

Element 1

x




1 2 3

Element 2

4 5

Definition of approximation

Example:
1D quadratic

But differentiability
is not yet obtained

This could be obtained by introducing also the derivatives on the
nodes as generalized node values

Element 1

x




1 2

Element 2
This works, but it is very
complicated in 2D and 3D

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 39

If not Galerkin method is applied (reduction of continuity
requirements!) for higher order differential equations mostly the higher
order differential equation is transformed into a system of differential
equation of first order.

Example: Basic equation

Introduction of function g 𝑔 =
𝜕𝑢

𝜕𝑥

Resulting system of 1st order equation

𝜕𝑔

𝜕𝑥
+ 𝑓 = 0

𝜕𝑢

𝜕𝑥
− 𝑔 = 0

𝜕2𝑢

𝜕𝑥2
+ 𝑓 = 0

By introducing the vorticity vector the Navier-Stokes equations can be transferred
into a system of 6 equations of first order

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 40

General procedure

Definition of
describing equations

Dividing of the domain
into Finite Elements

Definition of the local
approximation of the

solution quantities

Discrete form of the
describing equations

Assembling of the
relevant matrices

Solution of the system
of linear equations

Solution
(Linear equations)

Definition of
Computational domain,

Boundary conditions
Initial conditions

Convergence checkUpdate of
coefficients

Solution
(non-linear
equations)

1 2 3 4

5 6 7 8

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 41




=








 = F

x y z x
x y z dxdydz













 


, , , , ,...., , , min

2

2

In opposition to the Finite Difference Method, where a direct discretization of the
differential equations is undertaken, the FEM is based on a variation principle:

 is the solution function looked for. It can be a single function or a set of unknown
functions (e. g. for the Navier-Stokes equations  stands for the velocity components
and the pressure).

In structural mechanics an equivalent variation principle to the differential equation
formulation exists (e. g. principle of virtual work).

For the Navier-Stokes equations an equivalent variation principle is not known! As a
consequence an approximation must be used.

Discrete form of the describing equations

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 42

𝐷 Φ = 𝑓 𝑖𝑚 𝐺𝑒𝑏𝑖𝑒𝑡 Ω

ҭΦ = ෍

𝑘=1

𝑛

𝛼𝑘 ⋅ 𝜙𝑘

𝜀 = 𝐷(ҭΦ) − 𝑓

න

Ω

𝑤𝑘 ⋅ 𝜀𝑑Ω = න

Ω

𝑤𝑘 ⋅ (𝐷(ҭΦ) − 𝑓)𝑑Ω = 0 < 𝑘 = 1, . . . , 𝑛 >

Method of weighted residuals (MWR)

Partial Differential equation (PDE)

Approximation of the solution

𝜙𝑘 . . . 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
𝛼𝑘…𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 (𝑙𝑜𝑜𝑘𝑒𝑑 𝑓𝑜𝑟)

Introduced into the in PDE results in a residuum

Postulated:

linear independent weighting functions

Discrete form of the describing equations

There are several methods to choose the weighting functions

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 43

 2d


= min






k
d



 = 0

w k

k
=





Least Square Method

For the LSM it is postulated

This is equivalent to

Compared to the general MWR approach this results in the following weighting functions

Discrete form of the describing equations

Note: Using LSM no reduction of the continuity requirements can be obtained by
partial integration (Green-Gauss theorem)

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 44

Galerkin Formulation

This is the mostly used formulation for the Navier-Stokes equation.

The weighting function are chosen equal to the shape functions

kk Nw =

This results in a variation principle




= 0dNk

Discrete form of the describing equations

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 45

() ()
()
()

w x x x x
for x x

for x x
dxk

i i

k

i i

k i i

k

i i

k
= − − =



 =





=
−



  
0

1

()   − = = x x di i

k

xi
k



 0

Collocation method

Using the collocation method Dirac-functions are used as weighting functions

This is equivalent to the postulation, that the residuals at given points (collocation
points) is zero.

Discrete form of the describing equations

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 46

w
in D

out of D

k m

m

=




1

0

Subdomain Method

The weighting function is chosen to be 1 in the subdomain and 0 outside the
subdomain

This means the residuum zero in an „integral“ way in the subdomain.

The subdomain method is equivalent to the Finite Volume Method (FVM)

Discrete form of the describing equations

The weighting function is given as

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 47

General procedure

Definition of
describing equations

Dividing of the domain
into Finite Elements

Definition of the local
approximation of the

solution quantities

Discrete form of the
describing equations

Assembling of the
relevant matrices

Solution of the system
of linear equations

Solution
(Linear equations)

Definition of
Computational domain,

Boundary conditions
Initial conditions

Convergence checkUpdate of
coefficients

Solution
(non-linear
equations)

1 2 3 4

5 6 7 8

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 48

Based on the method of weighted residuals

w d k no of nodesk 


=  =  0 1,...,

This results in a linear system of equations (LSE)

bA =

w d w dk k e e

e

  



= 
() ()

()

the integral can be expressed by the sum of the integrals over all elements

The matrix A can be assembled from the element matrices, also the vector of the
right-hand side is calculated from all element contributions

Vector  are the node values, searched for.

Assembling of the relevant matrices

Calculation of the element matrices

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 49

The calculation of the element matrices will be shown later at an example.

 ==
)e()e(

bbundAA

The element matrices depend on the equations, the types of elements,
approximations etc.

For linear PDEs and rather simple types of elements the element matrices can be
calculated directly. For non-linear PDEs and/or more complex elements the
element matrices must be calculated numerically.

Assembling of the relevant matrices

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 50

A

b

The global matrix is assembled from
the local element matrices under
consideration of the global node
numbering

Assembling of the relevant matrices

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 51

1 0 0 0

21 22 23 24

31 32 33 34

41 42 43 44

1

2

3

4

2

3

4

a a a a

a a a a

a a a a

b

b

b

fix





































=






































 1 = fix



















=







































4

3

2

1

4

3

2

1

44434241

34333231

24232221

14131211

b

b

b

b

aaaa

aaaa

aaaa

aaaa
















Example: Diriclet b.c.

Node value 1 is given

Through the assembly of the
element matrices one obtains the
global linear system of equations

Dirichlet boundary conditions
must be introduces into this LSE

Neuman boundary conditions
result in an additional contribution
to the global matrix

Introduction of boundary conditions

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 52

General procedure

Definition of
describing equations

Dividing of the domain
into Finite Elements

Definition of the local
approximation of the

solution quantities

Discrete form of the
describing equations

Assembling of the
relevant matrices

Solution of the system
of linear equations

Solution
(Linear equations)

Definition of
Computational domain,

Boundary conditions
Initial conditions

Convergence checkUpdate of
coefficients

Solution
(non-linear
equations)

1 2 3 4

5 6 7 8

Linearization

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 53

Stokes-Linearization: Convection term is completely taken from the
previous iteration step

Picard-Iteration:

Newton-Iteration: fast convergence, small convergence radius

Basic equations













+




+






−=




+




+




2

2

2

2

y

v

x

v

y

p1

y

v
v

x

v
u

t

v

𝑢
𝜕𝑢

𝜕𝑥
≈ 𝑢𝑜𝑙𝑑

𝜕𝑢𝑛𝑒𝑤

𝜕𝑥













+




+






−=




+




+




2

2

2

2

y

u

x

u

x

p1

y

u
v

x

u
u

t

u
Linearization

Non-linear terms

Robust, slower convergence,
large convergence radius

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 54

0f
xx

U
2

j

2

j

*

j =−



−





 
=

=
8

1l

^

l

^

lN

Basic equation

Approximation within
the element 1

2
3

4

5
6

7

8

Residuum f
xx

U
2

j

^

2

j

^

*

j −



−




=



Method of weighted
residuals  



=
Elemente

)e(kk dwdw

Steady-state convection-diffusion equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 55

0dNdN
Elemente iEl

)e(kk ==  


Galerkin formulation kk Nw =

f
x

N

x

N
U

^
l

2

j

l2

j

l
*

j −

















−




=with

0df
x

N

x

N
UN

Elemente

^
l

2

j

l2

j

l
*

j

iEl

k =













−


















−




 

Steady-state convection-diffusion equation

elements

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 56

General procedure

Definition of
describing equations

Dividing of the domain
into Finite Elements

Definition of the local
approximation of the

solution quantities

Discrete form of the
describing equations

Assembling of the
relevant matrices

Solution of the system
of linear equations

Solution
(Linear equations)

Definition of
Computational domain,

Boundary conditions
Initial conditions

Convergence checkUpdate of
coefficients

Solution
(non-linear
equations)

1 2 3 4

5 6 7 8

Time integration

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 57

The time discretization is done
by means of finite differences
in time, FEM is used only in
space Explicit or implicit

Euler (1. order)

Crank Nicholson (2. order)

3 Level Schemes
explicit order implicit
(2. order)

Time discretization

explicit implicit

implicitexplicit

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 58

0f
xx

U
t 2

j

2

j

*

j =−



−




+





 
=

=
8

1l

^

l

^

lN

Basic equation

Approximation within
the elements

1
2

3

4

5
6

7

8

Residuum f
xx

U
t 2

j

^

2

j

^

*

j

^

−



−




+




=



MWR  


=
Elemente

)e(kk dwdw

Unsteady convection-diffusion equation

Galerkin formulation kk Nw =

elements

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 59

0dNdN
Elemente iEl

)e(kk ==  


Galerkin formulation

f
x

N

x

N
UN

^
l

2

j

l2

j

l
*

j

^
l −


















−




+= With the residuum

0df
x

N

x

N
UNdNN

Elemente

^
l

2

j

l2

j

l
*

j

iEl

k
^

iEl

lk =













−


















−




+














  

Unsteady convection-diffusion equation

Discretized equations

elements

l

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 60

Still a linear system
of equations must
be solved

=> In FEM usually an implicit time descretization is applied

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 61

w
x

dxk  


 

2

2

2

0

2

0




−








 =

Boundary conditions

(0)=1; ()=1.54308

Exact solution:   = +−c e c ex x

1 2 with c1 = c2 = 0.5

MWR

 


  

2

2

2 0 05
x

− = = .

Approximation
 
 = k kN

In the direct form the approximation
must be continuous and differentiable.

The requirement can be reduced by
applying Galerkin method and the Green
Gauss theorem

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 62

w Nk k=

Weighting functions = Shape functions

Cn-1- continuity

Integral contains derivations 2. order => approximation continuous and differentiable

N
N

x
N dxk

l
l l


 

2

2

2

0

2

0−


















 =


k and l count from 1 to the no of nodes n

By applying Green-Gauss theorem the continuity requirements can be reduced by
one order.

Example: 1D Helmholtz equation

Galerkin formulation

Node valuesSystem matrix (n x n)

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 63

Green-Gauss theorem

+



−=




  

 

ded
x

d
x

i

ii

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 64








  

N

x

N

x
N N dx A

k l
k l l+



















 = =

2

0

2

0
 

The resulting surface integral can be neglected since Diriclet boundary conditions are
given. For Neuman boundary conditions the surface integral has to be calculated and
results in an addition to the system matrix.

In the weak formulation the integral contains only derivatives of first order. Therefor
only C0-continuity is required. (This is the big advantage of the Galerkin formulation)

Solution with 4 linear elements

Example: 1D Helmholtz equation

Weak formulation

(Change of sign!!)

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 65

Element matrix

Dimensionless coordinate

L x xi i= −+1
 =

−x x

L

i
with

Linear shape functions

N Ni i= − =+1 1 ;








  

N

x

N

x
N N dx A

k l
k l

x

x

l e

i

i

+






















= =
+

 2
1

0
 ()

Calculation of the global matrix from the local element matrices

Ni

xi xi+1

Ni+1

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 66

A
L

N N
N N L d

e
k l

k l()
= +









  

1
2

2

0

1







 

dx Ld= 

















N

x

N

x L

Nk

= =
1

with

Tis results in

() ()

() ()
A

L

N
L N

L

N N
L N N

L

N N
L N N

L

N
L N

d
e()
=









 +









 +









 +









 +





















1 1

1 1

1 2

2 1 2
1 2

2 1 2

1 2
2 1 2

2 2

2 2 20

1































and

In components

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 67

𝑤𝑖𝑡ℎ
𝜕𝑁1

𝜕𝜉
= −1 𝑎𝑛𝑑

𝜕𝑁2

𝜕𝜉
= 1

𝑎𝑛𝑑 න

0

1

𝜉2𝑑𝜉 =
1

3
; න

0

1

1 − 𝜉 𝜉𝑑𝜉 =
1

6
𝑎𝑛𝑑 න

0

1

(1 − 𝜉)2𝑑𝜉 =
1

3

With L = 0.5 and  = 0.5 this results in the element matrix

A L

L

L

L

L

L

L

L
e() . .

. .
=

+ − +

− + +

















=
−

−











1

3

1

6
1

6

1

3

2 042 1979

1979 2 042

2 2

2 2

 

 

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 68

1 0 0 0 0

1979 4 083 1979 0 0

0 1979 4 083 1979 0

0 0 1979 4 083 1979

0 0 0 0 1

1

0

0

0

154308

1

2

3

4

5

− −

− −

− −













































=























. . .

. . .

. . .

.





















 
 1 51 154308= =. .Introduction of the boundary conditions

Final equation

Assembling of the
global matrix























−

−−

−−

−−

−

=

042.2979.1000

979.1083.4979.100

0979.1083.4979.10

00979.1083.4979.1

000979.1042.2

A

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 69

Solution

node numerical exact

1 1 1

2 103092 103141

3 112694 112763

4 129414 129468

5 154308 154308

. .

. .

. .

. .

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 70

Solution using two quadratic elements

Shape functions

N

N

N

e

e

e

1

2

3

1 1 2

4 1

1 2

()

()

()

()()

()

()

= − −

= −

= − −

 

 

 

In analogy to the linear elements the element
matrices can be calculated

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 71

Element matrix

A

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

e()
=

+
−

+ −

−
+ +

−
+

−
−

+ +























7

3

4

30

8

3

2

30

1

3 30
8

3

2

30

16

3

16

30

8

3

2

30
1

3 30

8

3

2

30

7

3

4

30

Both element matrices will be summed up and the boundary conditions must be
introduced.

Example: 1D Helmholtz equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 72

Global matrix

SolutionExample: 1D Helmholtz equation

Continuous, but
not differentiable

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 73

For linear PDEs and rather simple types of elements the element matrices can be calculated directly. For
non-linear PDEs and/or more complex elements the element matrices must be calculated numerically.

Gauss Integration

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 74

0f
xx

U
t 2

j

2

j

*

j =−



−




+





kkNˆ =

f
x

ˆ

x

ˆ
U

t

ˆ
2

j

2

j

*

j −



−




+




=0dNk =











=















−






















+




+











fdN

de
x

N
Nd

x

N

x

N

x

N
NUdNN

k

l

j

j

l
k

j

l

j

k

j

l
k*

j

llk 

Approximation: 𝑁𝑘… 𝑆ℎ𝑎𝑝𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Φ𝑘 …𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

Galerkin method: with

„weak“ Formulation

Picard-Iteration of
the convection term

Method of weighted residuals (MWR)

Transport equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 75

0
x

u

i

i =






























+









+






−=




+





i

j

j

i
eff

jij

i
j

i

x

u

x

u

xx

p1

x

u
u

t

u

Navier-Stokes equation

Mass conservation

Momentum conservation

Approximations

^
kk

^

k
i

^
k

i

^

pMp

uNu

=

=
𝑁𝑘 𝑎𝑛𝑑 𝑀𝑘 𝑆ℎ𝑎𝑝𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑢
^

𝑖
𝑘 𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 76

===



 n,...,1l,m,...,1q0dU

x

N
M l

i

i

l
q 



==

=+



−


















+




−
































+








+




+




•

m,...,1q,n,...,1l,n,...,1_k

0dnPMNPM
x

N1
dnU

x

N
U

x

N
N

dU
x

N
U

x

N

x

N
U

x

N
NU

~
UNN

i
qqkqq

i

k

j
l
j

i

l
l
i

j

l
k

eff

l
j

i

l
l
i

j

l

j

k

eff
l
i

j

l
k

j
l
i

lk












Momentum equations

Continuity equation

Navier-Stokes equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 77

Minimum continuity requirements:

Continuous approximation for velocity components

Discontinuous approximatio for pressure

Tri-linear Hexahedron
for velocity components

Constant pressure

Navier-Stokes equation

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 78

The approximations for velocity and pressure cannot be
defined independently.

For the Navier-Stokes equation the velocity components can
be interpreted as main variables (degrees of freedom),

The pressure can be seen as constrains

It is necessary to have more degrees of freedom as constrains

To guaranty a unique solution, the approximations must fulfill the LBB condition,
this condition is very complicated and cannot be discussed here.

LBB Condition

As a rule of thumb, it can be said, that the approximation of the velocities
should be one order higher compared to the approximation of the pressure

Ladyzhenskaya–Babuška–Brezzi condition

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 79

Example of elements,
satisfying the LBB condition

C
o

n
ti

n
u

o
u

s
p

re
ss

u
re

ap

p
ro

xi
m

at
io

n

D
is

co
n

ti
n

u
o

u
s

p
re

ss
u

re

ap
p

ro
xi

m
at

io
n

LBB Condition

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 80

LBB Condition

Elements failing the LBB
condition, but still
performing reasonable

Problem with decoupling of different pressure modes

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 81

Checkerboard oscillation

LBB Condition

Problem with decoupling of different pressure modes

Cure: Smoothing of the pressure

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 82

0f
xx

U
t 2

j

2

j

*

j =−



−




+





Convection Diffusion

Convection-diffusion problem

FD discretization

hyperbolic
elliptic

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 83

"Streamline-upwind" Petrov-Galerkin Method

0dNk =


f
x

ˆ

x

ˆ
U

t

ˆ
2

j

2

j

*

j −



−




+




=Residuum:

Galerkin:

Petrov-Galerkin: 0dN
~k =



kkNˆ =Approximation:

N k

~
N k

Upwind discretization

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 84















+

=

2RefürN

2Refür''k
UU

U

x

N
N

N
~

)e(k

)e(

ii

j

j

k
k

k


=

hU
Re

)e(
)e(

() 2/hRe/2)2/(Recoth''k)e()e(−=

SUPG weighting function

Upwind discretization

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 85

Example: Ship propeller

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 86

Tip vortex

Prediction of vortex cavitation

Example ship propeller

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 87

Tip vortex center Local grid refinement

Example ship propeller

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 88

Propeller skew

Separation point

Cavitation limit

Downstream field

Example ship propeller

Introduction to Computational Fluid

Dynamics in High Performance Computing

2024 FEM 89

Summary

• Finite Element Method is very flexible

• Different element types (tetraether, hexaeder, curvilinear elements, …..)

• Different approximation (linear, quadratic …..)

• Unstructured grids

• Mostly used: Galerkin method

• Green-Gauss theorem

• Reduction of continuity requirements

• Streamline upwind Petrov Galerkin method for convection dominated flows

• Skew-symmetric weighting function according to flow direction

Error estimation possible

Adaptive grid refinement possible

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89

