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Fluid (flowing medium): gas or liquid

Solid body     : dedicated volume, dedicated shape
Liquid     : dedicated volume, no dedicated shape
Gas  (Steam)  : no dedicated volume, no dedicated shape

Container with liquid Container with gas

No fluid

Fluid volume  VL


g

here:
No flow,
No external forces 
besides gravity

Fluids and gases 
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𝑉𝐹𝑙𝑢𝑖𝑑 ≤ 𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑉𝐹𝑙𝑢𝑖𝑑 = 𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝜌 =
𝑀𝐹𝑙𝑢𝑖𝑑

𝑉𝐹𝑙𝑢𝑖𝑑
𝜌 =

𝑀𝐹𝑙𝑢𝑖𝑑

𝑉𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

V m3 Volume
M kg Mass

𝜌
𝑘𝑔

𝑚3 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

ቆ𝑣 =
1

𝜌

𝑚3

𝑘𝑔
൰

specific
Volume

Constant density variable density

Container with liquid Container with gas

Fluids and gases 
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Compressibility of a fluid (isotherm)

Cross-section area A

(Fluid)

Volume V

Mass    M

Force F

(Druck)   
A

F
p =

Experiment:

Increasing load

F → F + dF ,  p → p+dp

V → V + dV (with dV < 0)

 →  + d


===


→=

=

= −

d

dp
.constRT

p
constTfürweil

1       Gasideales

104,45              Wasser

T

6
T


=


=





d

dpp

p

dpd
TT

Isothermal 
Compressibility coefficient

Fluids and gases 

(Pressure)

Water

Ideal gas

The compressibility of 
liquids is several 
orders of magnitude 
smaller compared to 
gases
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Compressibility of a gas flow

+→

+→

→

d

dppp

0u

Dichte

Druck

gkeitGeschwindi

Example:
Stagnation flow

Stagnation point
Velocity is zero
Pressure increases
Density can increase

incompressible: Density is constant, only pressure increases
compressible:    Pressure change is large enough, that it results is a significant change of 

density (compression) 

( )
( )

( )

2

u

d

dp

ud

2

1d

0uddudp

0upd

.constup

2

2

2

2

12

2

1

2

2

1

2

2

1

+


−=




=++

=+

=+Bernoulli equation:

Gas flow can be supposed to be
incompressible, when this 
expression is small 

Fluids and gases 

Velocity

Pressure

Density
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Compressibility of a gas flow
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This expression is small, when the 
Mach number is small, 
approximately Ma < 0.3

Examples: Mach number
Ventilation systems 0.1
Flow around cars 0.2-0.3
Wind rotor 0.2-0.5
--------------------------------------------------------------------
Steam turbine 0.7
Flow around Airplane 0.9
Explosion >1,5

Fluids and gases 

a: speed of sound

Mach number

Ideal gas
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Flow around a car

Example: Incompressible Fluid
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Example: Incompressible Fluid

Flow around a car
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Pressure distribution in the middle of the car

Flow around a car

Example: Incompressible Fluid

Measurement at the bottom
Measurement at the roof
Simulation at the bottom

Simulation at the roof
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
= Fl

Fl

E
aSpeed of sound

EFl [bar]  [kg/m3] aFl [m/s]

Water 2.06·104 1000 1440

Crude oil 1.56·104 900 1310

Petrol 0.88·104 750 1080

Air 0.13·101 1.2 330

Elasticity modulus

Density

Compressible Fluids

1 m³
1 bar  pressure increase

0.9995 m³

0.23 m³
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Speed of sound

Water: appr. 1400 m/s 

Air: appr. 330 m/s

Speed of sound in water decreases 
significantly with dissolved air

Compressible Fluids
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Example:
Length: 5 m
Speed of sound: 900 m/s

First Eigenfrequency: 45 Hz

Compressible Fluids

Example: Compressible pipe flow

Eigenfrequencies:
1st Eigenfrequency:  f1 = a/(4L)
2nd Eigenfrequency:  f2 = 3a/(4L)
3rd Eigenfrequency:  f3 = 5a/4L)
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Exciting frequency 20Hz

Compressible Fluids

Exciting frequency 45Hz Exciting frequency 70 Hz
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Difference in behavior of compressible and incompressible flows

Change

Waves (Oscillations)

Compressible Flow

Output

Incompressible Flow
Output

Changes have 
an immediate 
impact

For oscillations and resonance phenomena compressibility can be very significant

Change
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Mass conservation:

Momentum conservation:

Equation of state (e. g. ideal gas law):

Energy conservation:

Compressible Navier-Stokes equations
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Continuity equation:

Momentum equations:

Incompressible flow

( )









t x
u

i

i+ = 0Compressible mass conservation:

Incompressible flow: )t(f),p(f  .const=

This results in

Mostly:
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The equations were made dimensionless by 

• a characteristic length L and 

• a characteristic velocity Û   

( )

( )2
*

*

Û
pp

ÛL
tt


=

=

L
x

x

Û

u
u

i*

i

i*

i

=

=

Dimensionless equations
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Introduced into the Navier-Stokes equations results in
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With the Reynolds number Re


=
U L



Problem: No conditional equation for the pressure

Dimensionless equations

The only relevant characteristic number for incompressible 
flows is the Reynolds number
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Methods for calculation the pressure

• Artificial compressibility

Explicit, Implicit

• Poisson equation for the pressure

• Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others
Fractional Step Method

etc

Physical approximation

Based on 

Physical modelling

Numerical approximation
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Methods for calculation the pressure

• Artificial compressibility
Explicit, Implicit

• Poisson equation for the pressure

• Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others
Fractional Step Method

etc

“Physical” approximation

Based on 

Physical modelling

Numerical approximation
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Correct steady state solution: 0
t

p

a

1
2

k

→



=> exact Solution

Modified continuity equation

Artificial compressibility

( ) 0u
xt

i

i

=



+



Continuity equation
(Compressible)

ak ... Artificial compressibility

Numerical coefficient

Momentum equation
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=> Exact Solution

Modified continuity equation 

Introduction of  a Pseudo time 

Integration in each time step

Momentum equations

Artificial compressibility
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Time step

Pseudo time step

explicit or implicit

Time discretization is 
possible

Artificial compressibility
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Methods for calculation the pressure

• Artificial compressibility

Explicit, Implicit

• Poisson equation for the pressure

• Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others
Fractional Step Method

etc

Physical modelling

Numerical approximation

Physical approximation

Based on 
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Taking the momentum equation and derive it 
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Differentiate the x – equation with respect to x,
Differentiate the y – equation with respect to y
Differentiate the z – equation  with respect to z

Sum up the resulting equations leads to

Exact 
equation for 
the pressure

Poisson equation for the pressure
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With the continuity equation 

One obtains the conditional equation for the pressure 

0
x

u

i

i =




Poisson equation for the pressure

Needed: 2nd order derivatives of 
velocity
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Poisson equation for the pressure

Ui = f(P)

P = f(Ui)

Coupled system, solved iteratively 

Velocity is a function of pressure

Pressure is a function of velocity
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𝜌
𝜕𝑢𝑖
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𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖

Time step

Iteration loop 

explicit or implicit time 
discretization is possible

1

𝜌

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑖
= −

𝜕

𝜕𝑥𝑖
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𝜕𝑢𝑖

𝜕𝑥𝑗

Poisson equation for the pressure
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Time step

Iteration loop 

explicit or implicit time 
discretization is possible

𝐾𝑘𝑙  𝑃𝑙  =  𝑓𝑘𝑈𝑖
𝑜𝑙𝑑)LSE:

LSE: 𝐴𝑘𝑙  𝑈𝑖
𝑙 =  𝑓𝑘 𝑃

Poisson equation for the pressure



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 Incompressible Flows 30

Methods for calculation the pressure

• Artificial compressibility

Explicit, Implicit

• Poisson equation for the pressure

• Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others
Fractional Step Method

etc

Physical approximation

Based on 

Physical modelling

Numerical approximation
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Pressure correction methods

0
x

u

i

i =






























+









+




−




−=


















+






i

j

j

i

jiij

i
j

i

x

u

x

u

xxx

p

x

u
u

t

u

Continuity equation:

Momentum equation:

Constrain

Conditional equation for the velocities

Pressure represents a parameter to fulfill the continuity equation

Mathematical: Pressure is a Lagrange Multiplier 
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Estimation of the pressure

Solution of the momentum equations 

Calculation of the local continuity error

Pressure correction

Continuity error small

Solution
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Pressure correction methods
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Start

End

Flow equations

(Momentum and Continuity)

Turbulence equations 

Time step

Iteration

Coupled,
e. g. over t

Global iteration procedure
Iteration is anyway 
necessary because of 
non-linearity, coupled 
equations etc.
Independent of the 
pressure correction
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Start

Flow equations

(Momentum and Continuity)

End

Turbulence equations 

Time step

Iteration

Solution process

Estimation of pressure

Solution of the 
momentum equations

Calculation of the local 
continuity error

Pressure correction
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Discretized equations









=

















0

b

P

U

0Q

HA Momentum equations

Continuity equation

Calculation of the velocities from the momentum equation (1. row)

PHAbAU
11 −−

−=

Introduced into the continuity equation (2. row) results in an equation for the pressure

( ) bAQPHAQ
11 −−

=

This equation is very complex and must be solved iteratively.

Uzawa algorithm
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Assumption: P
0

Local continuity error

Pre-conditioned Richardson iteration:

P P r mit r QU
n n n n n+

= − =
1



Conditioning matrix

Acceleration of the convergence by penalization 

Uzawa Algorithmus

Calculation: with
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[ A HQ U b H P
n n

+ = −

Iteration:

Suitable choice of conditioning matrix:  = E

„Penalty“-parameter

P
0

Assumption:

LSE to determine velocity:

Local continuity error: r QU
n n

=

New pressure: P P r
n n n+

= −
1



It
er

at
io

n

Uzawa algorithm
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Start

Flow equations

(Momentum and Continuity)

End

Turbulence equations 

Time step

Iteration

Solution process

Estimation

[ A HQ U b H P
n n

+ = −

r QU
n n

=

P P r
n n n+

= −
1

  = E

P
0



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 Incompressible Flows 39

Discretized equations
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00

b

P

U
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HA Momentum equation

Continuity equation

LU – Decomposition (lower and upper triangle matrices)
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
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





−










+

+−

−
00

0

*

1

11

1

*

b

P

U

E

HAE

HAQQ

A

P

U

n

n

  

Two – stage correction methods

Pressure correction
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AForward substitution
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1n

1n1
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n

PHAUU

PP

UQPHAQ

bUAProcedure

Pressure correction

Backward substitution
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1

2

*1

*1

**

1

*

++

+

−=

=

=

=

nn

n

PHBUU

PP

UQPHBQ

bUA

Calculation of A-1 to expensive

=> Approximation  of A-1

LSE for velocities

Simplified equation for pressure

Pressure update

Velocity update

Various pressure correction methods  differ by the choice of the approximation for B1

und B2

Pressure correction
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Simplest choice for unsteady flow (projection method)

EtBB 21 =
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Example: Phase resonance Francis turbine

Spiral case

Stay vanes

Runner blades

Adjustable 
guide vanes

Draft tube
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Incompressible calculation

Ruchonnet, N. et al., Simulation of phase resonance in radial hydraulic machines, Vienna Hydro 2014
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Compressible calculation

Ruchonnet, N. et al., Simulation of phase resonance in radial hydraulic machines, Vienna Hydro 2014
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Coupled compressible  – incompressible calculation

Example



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 Incompressible Flows 49

Resonance analysis
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Ellbow draft tube
• Unstable flow can result in a vortex rope
• Vortex rope leads to a rotating pressure field 
• Dynamic loading on the draft tube structure
• Synchronous pressure pulsation 

at the draft tube inlet
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Modellturbine
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Vortex rope vibration

Model turbine
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64% Guide vane opening 93% Guide vane opening

Model turbine

If the excitation is in resonance with the penstock, it can result in extreme 
pressure amplitudes
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Coupled Simulation

Assumption:

Velocity values scaled by discharge 
Velocity profiles constant 
Flow angle constant

Averaged pressure at draft 
tube inlet as 1-D boundary 
condition to MoC.



Introduction to Computational Fluid 

Dynamics in High Performance Computing

2024 Incompressible Flows 55

CFD

MoC

Loop carried out at each time step
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Summary

• Relevant physical effects determine if a flow shall be treated  incompressible 

or compressible

Applying compressible calculation for low Ma leads to stiff problems, immense computational 

effort  

• Gas flows can be treated incompressible up to a Ma = 0.3

• Liquid flows must be treated compressible when pressure waves plays an 

important role (resonance phenomena) 

• Physical relevance For incompressible flows there exists no direct equation to 

determine the pressure. Therefore, a special treatment is required:

– Artificial compressibility

– Pressure correction

– Poisson equation

– Others

• Coupled simulations (partly compressible, partly incompressible) can be a 

good compromise 
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