

Incompressible Flows

Dr. Albert Ruprecht

Former: Institute of Fluid Mechanics and Hydraulic Machinery

University of Stuttgart

Fluids and gases

Fluid (flowing medium): gas or liquid

Solid body : Liquid : Gas (Steam) : dedicated volume, dedicated shape

- dedicated volume, no dedicated shape
- no dedicated volume, no dedicated shape

Container with liquid

Container with gas

here: No flow, No external forces besides gravity

Fluids and gases

2024

Introduction to Computational Fluid Dynamics in High Performance Computing

Experiment: Increasing load $F \rightarrow F + dF$, $p \rightarrow p+dp$ $V \rightarrow V + dV$ (with dV < 0) $\rho \rightarrow \rho + d\rho$ $\frac{d\rho}{\rho} = \gamma_T \frac{dp}{p} \Leftrightarrow \frac{p}{\rho} = \gamma_T \frac{dp}{d\rho}$ Isothermal Compressibility coefficient

Water
$$\gamma_T = 45, 4 \cdot 10^{-6}$$

Ideal gas $\gamma_T = 1$
weil für T = const $\rightarrow \frac{p}{\rho} = RT = const. = \frac{dp}{d\rho}$

The compressibility of liquids is several orders of magnitude smaller compared to gases

Fluids and gases

Compressibility of a gas flow

Example: Incompressible Fluid

Flow around a car

Example: Incompressible Fluid

Flow around a car

Example: Incompressible Fluid

Compressible Fluids

Compressible Fluids

Speed of sound

- Water: appr. 1400 m/s
- Air: appr. 330 m/s
- Speed of sound in water decreases significantly with dissolved air

Compressible Fluids

Example: Compressible pipe flow

Eigenfrequencies:

1st Eigenfrequency: $f_1 = a/(4L)$ 2nd Eigenfrequency: $f_2 = 3a/(4L)$ 3rd Eigenfrequency: $f_3 = 5a/4L$)

Example: Length: 5 m Speed of sound: 900 m/s

First Eigenfrequency: 45 Hz

2024

Introduction to Computational Fluid Dynamics in High Performance Computing

Compressible Fluids

For oscillations and resonance phenomena compressibility can be very significant

2024

Compressible Navier-Stokes equations

Mass conservation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0$$

Momentum conservation:

$$\rho \left(\frac{\partial u_{i}}{\partial t} + u_{j} \frac{\partial u_{i}}{\partial x_{j}} \right) = -\frac{\partial p}{\partial x_{i}} - \rho \frac{\partial \Psi}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) - \frac{2}{3} \mu \frac{\partial u_{k}}{\partial x_{k}} \delta_{ij} \right]$$

Equation of state (e. g. ideal gas law):
$$p = \rho R T$$

Energy conservation:
$$\frac{\partial T}{\partial t} + u_{j} \frac{\partial T}{\partial x_{j}} - \alpha \left(\frac{\partial}{\partial x_{j}} \frac{\partial T}{\partial x_{j}} \right) = \Phi$$

15

Incompressible flow

Incompressible flow:

Compressible mass conservation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0$$

 $\rho \neq f(p), \rho \neq f(t)$

Mostly:

This results in

Continuity equation:
$$\frac{\partial u_i}{\partial x_i} = 0$$

Momentum equations: $\rho \left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right) = -\frac{\partial p}{\partial x_i} - \rho \frac{\partial \Psi}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$

Dimensionless equations

The equations were made dimensionless by

- a characteristic length L and
- a characteristic velocity Û

$$u_{i}^{*} = \frac{u_{i}}{\hat{U}} \qquad t^{*} = \frac{t}{(L/\hat{U})} x_{i}^{*} = \frac{x_{i}}{L} \qquad p^{*} = \frac{p}{(\rho\hat{U}^{2})}$$

Dimensionless equations

Introduced into the Navier-Stokes equations results in

$$\frac{\partial u_i^*}{\partial t^*} + u_j^* \frac{\partial u_i^*}{\partial x_j^*} = \frac{\partial p^*}{\partial x_i^*} + \frac{\partial}{\partial x_j^*} \left[\frac{1}{Re} \left(\frac{\partial u_i^*}{\partial x_j^*} + \frac{\partial u_j^*}{\partial x_i^*} \right) \right]$$
$$\frac{\partial u_i^*}{\partial x_i^*} = 0$$
$$\hat{U}L$$

With the Reynolds number

 $Re = \frac{OL}{V}$

2024

The only relevant characteristic number for incompressible flows is the Reynolds number

Problem: No conditional equation for the pressure

Methods for calculation the pressure

• Artificial compressibility

Explicit, Implicit

- Poisson equation for the pressure
- Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others

Fractional Step Method

etc

Based on

Physical approximation

Physical modelling

Numerical approximation

Methods for calculation the pressure

Artificial compressibility

Explicit, Implicit

- Poisson equation for the pressure
- Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others

Fractional Step Method

etc

Based on

"Physical" approximation

Physical modelling

Numerical approximation

Introduction to Computational Fluid Dynamics in High Performance Computing

Artificial compressibility

Continuity equation (Compressible)

Artificial compressibility

Modified continuity equation

Momentum equation

Correct steady state solution:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0$$

$$\frac{\partial \mathbf{p}}{\partial \rho} = \mathbf{a}_{k}^{2}$$

a_k ... Artificial compressibility Numerical coefficient

$$\frac{1}{a_{k}^{2}}\frac{\partial p}{\partial t} + \frac{\partial u_{i}}{\partial x_{i}} = 0$$

$$\rho\left(\frac{\partial u_{i}}{\partial t} + u_{j}\frac{\partial u_{i}}{\partial x_{j}}\right) = -\frac{\partial p}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}\left[\mu\left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}}\right)\right]$$
solution:
$$\frac{1}{a_{k}^{2}}\frac{\partial p}{\partial t} \rightarrow 0 \quad \Rightarrow \text{ exact Solution}$$

2024

Artificial compressibility

For unsteady problems

Introduction of a Pseudo time $\boldsymbol{\tau}$

Modified continuity equation

$$\frac{1}{a_{k}^{2}}\frac{\partial p}{\partial \tau} + \frac{\partial u_{i}}{\partial x_{i}} = 0$$

Momentum equations

$$\rho \left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$$
$$\frac{1}{a_k^2} \frac{\partial p}{\partial \tau} \to 0 \qquad => \text{Exact Solution}$$

Integration in each time step

2024

2024

Introduction to Computational Fluid Dynamics in High Performance Computing

Artificial compressibility Time step **Pseudo time step** $\frac{1}{a_k^2}\frac{\partial p}{\partial \tau} \! + \! \frac{\partial u_i}{\partial x_i} = 0$ $\frac{\partial \mathbf{u}_{i}}{\partial t} + \mathbf{u}_{j} \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}_{i}} = -\frac{\partial \mathbf{p}}{\partial \mathbf{x}_{i}} + \frac{\partial}{\partial \mathbf{x}_{i}} \left| \mu \left(\frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}_{i}} + \frac{\partial \mathbf{u}_{j}}{\partial \mathbf{x}_{i}} \right) \right|$ explicit or implicit Time discretization is possible

Methods for calculation the pressure

Artificial compressibility

Explicit, Implicit

- Poisson equation for the pressure
- Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others

Fractional Step Method

etc

Based on

Physical approximation

Physical modelling

Numerical approximation

Poisson equation for the pressure

Taking the momentum equation and derive it

$$\rho \left(\frac{\partial u_{i}}{\partial t} + u_{j} \frac{\partial u_{i}}{\partial x_{j}} \right) = -\frac{\partial p}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right]$$

Differentiate the x – equation with respect to x, Differentiate the y – equation with respect to yDifferentiate the z – equation with respect to z

Sum up the resulting equations leads to

$$\frac{1}{\rho} \frac{\partial^2 p}{\partial x_i \partial x_i} = -\frac{\partial}{\partial x_i} \left(u_j \frac{\partial u_i}{\partial x_j} \right) + \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \right) \qquad \stackrel{\text{Exall equation of the set of$$

Exact equation for the pressure

Poisson equation for the pressure

$$\frac{1}{\rho} \frac{\partial^2 p}{\partial x_i \partial x_i} = -\frac{\partial}{\partial x_i} \left(u_j \frac{\partial u_i}{\partial x_j} \right) + \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} \left[v \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \right)$$

With the continuity equation

$$\frac{\partial u_i}{\partial x_i} = 0$$

One obtains the conditional equation for the pressure

$$\frac{1}{\rho} \frac{\partial^2 p}{\partial x_i \partial x_i} = -\frac{\partial}{\partial x_i} \left(u_j \frac{\partial u_i}{\partial x_j} \right)$$

Needed: 2nd order derivatives of velocity

2024

Poisson equation for the pressure

Coupled system, solved iteratively

Velocity is a function of pressure

Pressure is a function of velocity

$$U_i = f(P)$$
$$P = f(U_i)$$

2024

Poisson equation for the pressure

Poisson equation for the pressure

2024

Methods for calculation the pressure

• Artificial compressibility

Explicit, Implicit

• Poisson equation for the pressure

Pressure correction methods

Usawa

SIMPLE, SIMPLEC, SIMPLEST, PISO

• others

Fractional Step Method

etc

Based on

Physical approximation

Physical modelling

Numerical approximation

Pressure correction methods

Conditional equation for the velocities

Pressure represents a parameter to fulfill the continuity equation

Mathematical: Pressure is a Lagrange Multiplier

Pressure correction methods

Introduction to Computational Fluid Dynamics in High Performance Computing

Introduction to Computational Fluid Dynamics in High Performance Computing

2024

Uzawa algorithm

Discretized equations

$$\begin{bmatrix} \underline{A} & \underline{H} \\ \underline{Q} & 0 \end{bmatrix} \begin{bmatrix} \underline{U} \\ \underline{P} \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \underline{0} \end{bmatrix}$$

Momentum equations

Continuity equation

Calculation of the velocities from the momentum equation (1. row)

$$\underline{U} = \underline{A}^{-1}\underline{b} - \underline{A}^{-1}\underline{H}\underline{P}$$

Introduced into the continuity equation (2. row) results in an equation for the pressure

$$\left(\underline{Q}\underline{A}^{-1}\underline{H}\right)\underline{P} = \underline{Q}\underline{A}^{-1}\underline{b}$$

This equation is very complex and must be solved iteratively.

Uzawa Algorithmus

Pre-conditioned Richardson iteration:

Assumption: P^0

Calculation: $\underline{P}^{n+1} = \underline{P}^n - \underline{\rho}\underline{r}^n$ with $\underline{r}^n = \underline{Q}\underline{U}^n$ Conditioning matrix Local continuity error

Acceleration of the convergence by penalization

Uzawa algorithm

Suitable choice of conditioning matrix:

$$\underline{\rho} = \lambda \underline{\underline{E}}$$

Introduction to Computational Fluid Dynamics in High Performance Computing

2024

Pressure correction

Two – stage correction methods

Discretized equations

Momentum equation

LU – Decomposition (lower and upper triangle matrices)

$$\begin{bmatrix} \underline{A} & 0 \\ \underline{Q} & -\underline{Q}\underline{A}^{-1}\underline{H} \end{bmatrix} \begin{bmatrix} \underline{E} & \underline{A}^{-1}\underline{H} \\ 0 & \underline{E} \end{bmatrix} \begin{bmatrix} \underline{U}^{n+1} \\ \underline{P}^{n+1} \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \underline{0} \end{bmatrix}$$
$$\begin{bmatrix} \underline{U}^{n+1} \\ \underline{P}^{n+1} \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \underline{0} \end{bmatrix}$$

Pressure correction

Forward substitution

$$\begin{bmatrix} \underline{A} & 0 \\ \underline{Q} & -\underline{Q}\underline{A}^{-1}\underline{H} \end{bmatrix} \begin{bmatrix} \underline{U}^* \\ \underline{P}^* \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \underline{0} \end{bmatrix}$$
$$\begin{bmatrix} \underline{E} & \underline{A}^{-1}\underline{H} \\ 0 & E \end{bmatrix} \begin{bmatrix} \underline{U}^{n+1} \\ \underline{P}^{n+1} \end{bmatrix} = \begin{bmatrix} \underline{U}^* \\ \underline{P}^* \end{bmatrix}$$

Backward substitution

Procedure

$$\underline{\underline{A}}\underline{\underline{U}}^{*} = \underline{\underline{b}}$$

$$\underline{\underline{Q}}\underline{\underline{A}}^{-1}\underline{\underline{H}}\underline{\underline{P}}^{*} = \underline{\underline{Q}}\underline{\underline{U}}^{*}$$

$$\underline{\underline{P}}^{n+1} = \underline{\underline{P}}^{*}$$

$$\underline{\underline{U}}^{n+1} = \underline{\underline{U}}^{*} - \underline{\underline{A}}^{-1}\underline{\underline{H}}\underline{\underline{P}}^{n+1}$$

Pressure correction

- Calculation of A⁻¹ to expensive
- => Approximation of A^{-1}

Various pressure correction methods differ by the choice of the approximation for ${\rm B_1}$ und ${\rm B_2}$

Simplest choice for unsteady flow (projection method)

$$\underline{\underline{B}}_1 = \underline{\underline{B}}_2 \approx \Delta t \underline{\underline{E}}$$

Implicit pressure-based scheme for NS equations (SIMPLE)

SIMPLE: Semi-Implicit Method for Pressure-Linked Equations

Implicit pressure-based scheme for NS equations (PISO)

PISO: Pressure Implicit with Splitting Operators

Incompressible Flows

45⁴

Ruchonnet, N. et al., Simulation of phase resonance in radial hydraulic machines, Vienna Hydro 2014

Incompressible Flows

46 4

Compressible calculation

Ruchonnet, N. et al., Simulation of phase resonance in radial hydraulic machines, Vienna Hydro 2014

Incompressible Flows

47 47

2024

Introduction to Computational Fluid Dynamics in High Performance Computing

Coupled compressible – incompressible calculation

Ellbow draft tube

- Unstable flow can result in a vortex rope
- Vortex rope leads to a rotating pressure field
- Dynamic loading on the draft tube structure
- Synchronous pressure pulsation

at the draft tube inlet

Introduction to Computational Fluid Dynamics in High Performance Computing

51

UNIVERSITÄT SIEGEN

Introduction to Computational Fluid Dynamics in High Performance Computing

2024

2024

Introduction to Computational Fluid Dynamics in High Performance Computing

If the excitation is in resonance with the penstock, it can result in extreme pressure amplitudes

Incompressible Flows

55

<u>Summary</u>

• Relevant physical effects determine if a flow shall be treated incompressible or compressible

Applying compressible calculation for low Ma leads to stiff problems, immense computational effort

- Gas flows can be treated incompressible up to a Ma = 0.3
- Liquid flows must be treated compressible when pressure waves plays an important role (resonance phenomena)
- Physical relevance For incompressible flows there exists no direct equation to determine the pressure. Therefore, a special treatment is required:
 - Artificial compressibility
 - Pressure correction
 - Poisson equation
 - Others
- Coupled simulations (partly compressible, partly incompressible) can be a good compromise