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• Example: Halving grid size divides error by factor of two for
(O1); four for O2

• Valid for smooth problems in the limit 
• Mostly: Polynomial approximation of solution; with 

polynomial degree

Preliminary: Order of Accuracy
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1. Motivation
2. 2nd order Finite Volume: Reconstruction, Limiting
3. Higher-order Finite Volume: ENO, WENO
4. Discontinuous Galerkin

Outline
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FV-Discretization (Smooth Problem)

solution

Mean value

Problem: Values at cell interfaces differ from the real solution.

Real value at cell
interface
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Get accurate/smooth solution approximation in smooth 
regions while capturing/retaining physical discontinuities.

Fundamental Challenge for High Order Methods: 
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Motivation-I : High Resolution/Order/Accuracy
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Motivation-I : High Resolution/Order/Accuracy

O2 – 643 DOF O16 – 643 DOF DNS –5123 DOF
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Motivation I : High Resolution/Order/Accuracy
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Motivation-II : Efficiency
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Reconstruction in 1D

• Ansatz: Instead of a constant approximation in each cell, a 
linear distribution is used. The integral value must be 
preserved.

• Problem: The FV method has no possibility to save interior 
cell information beside the mean value.
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Reconstruction in Space: Slope Calculation

• Process: Only cell mean values are saved. The slope in each 
cell is calculated by using adjoined cells. Two neighbors 
allow the computation of two gradients (s1,s2).

• Problem: Which one is the correct gradient to reconstruct?
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Reconstruction in Space: TVD-Property

• TVD-Property (Total Variation Diminishing)
• Mathematical theory for scalar conservation law in 1D
• Over time, no new extrema may be generated:

• Sufficient condition after A. Harten (1983):
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Reconstruction in Space: TVD-Property

Artificial new 
maximum

• The reconstructed slopes have to be limited --> Limiter



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD06 - High Order Methods 16

1D Limiter Functions: Examples

1. Minmod limiter (Roe, 1986):

2. Sweby limiter (Sweby, 1984):
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Reconstruction in 2D / 3D

• Cartesian Grid:
Each dimension is independent of the other. The 1D-scheme 
can be applied for each dimension.

• Unstructured Grid:
More complex. Dimensions cannot be separated. More 
complex slope and limiter calculation.
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• Reconstruction in space

• A limiter is necessary

• Barth & Jespersen limiter
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Reconstruction on Unstructured Grids
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Methods of 2nd order in Time

Two different methods are possible:
• Method of lines:

• Separation of space and time integration
• Time integration can be easily exchanged
• Time and space order are generally independent
• Easy to implement

• Space-time-expansion:
• Taylor expansion in time
• Less flexible, equation-dependent
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• The time discretization is independent of the 
spatial discretization.

• Calculate the spatial operator with an arbitrary scheme

• Results in an ordinary differential equation, which can be 
integrated in time by a method for initial value problem.
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Method of Lines



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Fall 2023 HPCFD06 - High Order Methods 21

Method of Lines – Implementation

• Typical methods are explicit Runge-Kutta methods

• or implicit BDF methods
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How to get better reconstructions?
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How Do We Get Non-Oscillating Polynomials at a 
Discontinuity? 
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• Add neighboring interpolation points one by one
• Thus increase the polynomial degree
• For each new point, choose between left and right:

– Which yields the smallest change of the polynomial?
– Which yields the smoothest part of the solution? (do not 

include discontinuity in the stencil)

Essentially Non-Oscillatory (ENO) 
Reconstruction
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Example: ENO Reconstruction
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• Constant solution ui is 0th degree polynomial
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Example: ENO Reconstruction – 1st Step
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• Candidates: left or right neighbor xi-1 and xi+1

• xi+1 yields smaller change compared to previous (0th degree) 
polynomial
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Example: ENO Reconstruction – 2nd Step

• Candidates: left or right neighbor xi-1 and xi+2

• xi+2 yields smaller change compared to previous (1st degree) 
polynomial
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• Formal method: Newton polynomials (N0=1, N1=(x-x0), …) , 
divided differences with smallest coefficients

• Stencil depends on the approximate solution
• Important is to keep the integral value

Some Comments on the ENO Reconstruction
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• Take the weighted average of the polynomials of all stencils:

• Adaptive weighting via an oscillation indicator

Weighted Essentially Non-Oscillatory
Reconstruction (WENO)
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central stencil

left-sided stencil

right-sided stencil
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Example: WENO Reconstruction
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• O5 stencil is linear combination of three O3 stencils: 

is O5!

• With this: 

௞
ఊೖ

ௌೖାఢ
మ,    ௞

ఠ෥ೖ

ఠ෥భାఠ෥మାఠ෥య

 Smooth regions: O5! (similar ௞ means ௞ ௞)
 Unsmooth regions: Weighting strongest for least oscillating stencil

WENO: How To Get Weights From Oscillation
Indicator ?
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Structured Grids: Works well

• High computational effort and memory requirements

• Requirement: grid transformation is high-order accurate and 
smooth

Unstructured grids: Troublesome!

• Choice of neighboring grid cells

• In practical simulations the high-order accuracy is usually
not obtained (grid regularity)
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Reconstruction in Multi Dimensions
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Stencils for O(3) reconstruction, triangular grid
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Choice of Stencils
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• Unsteady
– Explicit Runge-Kutta (RK) methods, IMEX-RK (implicit-

explicit), fully-implicit RK
– Space-time expansion: One step method with space time 

coupling.
• Steady

– Implicit in time and low order accuracy in time 
(accuracy in time does not affect the steady state)

– Implicit 1st order

High Order in Time
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Outline

1. Motivation
2. 2nd order Finite Volume: Reconstruction, Limiting
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4. Discontinuous Galerkin
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• Finite Element (Galerkin Method) 
within cells

• Discontinuities between cells allowed
• Riemann fluxes over discontinuities as

in FV
• Difference to (W)ENO / FD: 

Polynomial within cell
--> High order accurate
--> Can handle shocks / discontinuities
--> Compact stencil (local, efficient)

Discontinuous Galerkin (DG): Idea

u

x
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7 Steps for derivation:
1. Split into elements, transform to reference element
2. Multiplication with test function, integration over elements
3. Integration by parts
4. Choose basis & test functions
5. Numerical evaluation of the spatial integrals
6. Riemann solvers for fluxes over discontinuities
7. Time integration with explicit RK

DGSEM: A Special DG Method
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Step 0: Starting point: Transport equation

௧

Step 1: Split domain into elements, map each to reference element
ௗ

௠ ௠

௠ is the Jacobian of element . Result:

௠ ௧
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DGSEM Derivation (1D)
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Step 2: Multiplication by test function and integration
over the grid cell ௠ leads to

௠ ௧

ொ೘ ொ೘

Step 3: Integration by parts

௠ ௧

ொ೘ ொ೘
కୀଵ కୀିଵ

volume integral surface terms
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DGSEM Derivation (1D)
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Step 4: Choose basis for numerical solution. 
Polynomial ansatz: 

௛ ௜ ௜

ே

௜ୀ଴

We choose Lagrange polynomials ௜ ௝ ௜௝ as 
basis and test functions ௜ ௜ ௜. 

Lagrange polynomials are defined on a point set ௝

- In DGSEM, Legendre-Gauss or Legendre-Gauss-
Lobatto points
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DGSEM Derivation (1D)
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Insert: 

௠ ௛ ௞

ொ೘

௛ ௞

ொ೘

௞ ௛ ௞ ௛

Step 5: Evaluate integrals with numerical qudrature. 

ொ೘

௝ ௝

ே

௝ୀ଴

In DGSEM, integration points = interpolation points
(Legendre-Gauss or Legendre-Gauss-Lobatto)
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DGSEM Derivation (1D)

quadrature:
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Step 6:

Surface terms

௞ ௛ ௞ ௛

Problem: Solution ௛ is discontinuous at 
element interface . 
 Flux ௛ is not uniquely defined

Solution: Replace by numerical flux
approximation ∗

௟ ௥ as in FV. 
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DGSEM Derivation (1D)

u

x
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Put it all together: (notation ± )
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Insert ௜ ௝ ௜௝ and re-arrange:
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DGSEM Derivation (1D)
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• In 2D/3D, we simply use the
1D operator along the grid
lines

• Unstructured curved meshes
are possible!

DGSEM 2D/3D
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• High-order increases efficiency in most cases
• 2nd order FV via reconstruction and limiting (standard in 

industry)
• High-order ENO/WENO for FV: 

– mostly block-structured meshes
– limited flexibility

• Several other high-order methods, e.g. DG(SEM):
– increased flexibility (unstructured grids)
– increased efficiency (compact stencil)

Conclusion


