

Simulation of turbulent flows

HPCFD07

Jochen Fröhlich Institute of Fluid Mechanics, TU Dresden, Germany

Course "Introduction to CFD", HLRS, Dresden, 5.-9.2.2024

Motivation

- Environmental flows •
 - Weather _
 - Rivers, lakes _
 - Pollution _
- Flows around objects ٠
 - Cars _
 - Planes _
 - Trains _
 - Buildings _
 - Sports —
- Internal flows •
 - Pipes, ducts, valves —
 - Combustion devices _

www.uni-koeln.de]

Water surface Elbe

Power plants, chemical industry, ...

Power plant: Turbulence in all parts

Example: flow around compressor blade

\rightarrow most technical flows are turbulent

Content

Description of turbulence

- Modelling approaches for turbulent flow
- RANS equations and closure problem
- **RANS** models
- RANS modelling near walls
- LES and hybrids
- Vortex detection
- Final recommendations

Here, in given time, only limited coverage

Generation of turbulence

Increasing Reynolds number, e.g. by increasing velocity

 $Re = \frac{UL}{v} = \frac{inertial\ forces}{viscous\ forces}$

Instability (often sequence of instabilities) \rightarrow Transition to turbulence

Properties of turbulent flows

- always unsteady and 3D •
 - Laminar flows can be 1D, 2D, 3D _
 - Laminar flows can be steady or unsteady —
- irregular, "chaotic" •
 - Laminar flows are regular and smooth
- enhanced exchange of momentum, heat, concentration, ... ٠
- more dissipation, more friction •
- multiscale phenomenon ٠

HPCFD07. Turbulence Modelling, - 6

1982

an Dyke

Different types of turbulent flow

homogeneous & isotropic (statistically)

• jets and shear layers

• boundary layers

• wakes behind bluff bodies

[van Dyke 1982]

real world turbulence is anisotropic

٠

....

Turbulence is multiscale

- Continuous size distribution of fluctuating velocity contributions (spectrum)
 k = wave number
- NB: Holds for spectra in space and time (Taylor hypothesis)

Energy cascade [Kolmogorov 1941]

- Homogenous, isotropic turbulence Energy of eddies at wave number kE(k) = P(k) - D(k)
- Production *P*: large vortices
- Dissipation *D*: small vortices
- Inertial range: energy cascade
- Theory [Pope 2000]

 $\approx -\frac{1}{L}$

 $\log E(k)$

P(k)

D(k)

2013]

de Souza,

 $\log k$

 $\sim k^{-5/3}$

 $\approx \frac{1}{l_K}$

DRESDE

Content

Description of turbulence

Modelling approaches for turbulent flow

RANS equations and closure problem

RANS models

RANS modelling near walls

LES and hybrids

Vortex detection

Final recommendations

Navier-Stokes equations

Here, incompressible flow with $\rho = const.$, $\mu = const.$, $(\nu = \frac{\mu}{\rho} = const.)$

Conservation of mass

Conservation of momentum

Equation of state

 $\rho = \rho_0$

 $\frac{\partial(\rho u_i)}{\partial t}$

$$+ \frac{\partial(\rho u_{i}u_{j})}{\partial x_{j}} = - \frac{\partial p}{\partial x_{i}} + \underbrace{\frac{\partial \tau_{ij}}{\partial x_{j}}}_{= \mu \frac{\partial^{2} u_{i}}{\partial x_{i} \partial x_{j}}}$$

 $\tau_{ij} = \mu S_{ij}$ $S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$

Transport equation of scalar quantity *c*

$$\frac{\partial(\rho c)}{\partial t} + \frac{\partial(u_j \rho c)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma_c \frac{\partial c}{\partial x_j} \right) + S_c$$

Navier-Stokes equations

Here, incompressible flow with $\rho = const.$, $\mu = const.$, $(\nu = \frac{\mu}{\rho} = const.)$

Conservation of mass

Conservation of momentum

 $\tau_{ij} = \mu S_{ij}$ $S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$

Fluid flow obeys NSE "Are the equations for turbulent flows the same as for laminar flows?" \rightarrow yes !

 \rightarrow Why not just compute the unsteady turbulent flow?

Direct Numerical Simulation

J. Fröhlich, Institute of Fluid Mechanics, TUD, 2024

Direct Numerical Simulation

Even if DNS would be feasible

- \rightarrow too costly for applications
- \rightarrow overkill for typical questions

\rightarrow DNS for model development

et al

after [Schlatter

<u>Reynolds-Averaged Navier Stokes (RANS) simulation</u>

In between: Large Eddy Simulation (LES) and hybrid LES/RANS

very fine grid $N \sim Re^{9/4}$

Content

Description of turbulence

Modelling approaches for turbulent flow

RANS equations and closure problem

RANS models

- RANS modelling near walls
- LES and hybrids
- Vortex detection
- Final recommendations

RANS - equations for mean flow

Reynolds averaging

Define "mean" via averaging operation, e.g.

$$\bar{u}_i(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T u_i(x, t) dt$$
$$u_i = \bar{u}_i + u'_i \qquad p = \overline{p} + p' \quad \text{etc}$$

show that

$$\overline{a+b} = \overline{a} + \overline{b} , \quad \overline{\partial u_i / \partial x_j} = \partial \overline{u_i} / \partial \overline{x_j}$$
$$\overline{u'_i} = 0 , \quad \overline{\overline{u_i}} = \overline{u_i} , \quad \overline{\overline{u_i} u_j'} = 0 , \quad \overline{u'_i u_j'} \neq 0 \quad \text{(in general)}$$

Apply averaging to NSE

$$\frac{\overline{\partial \rho u_i}}{\partial x_i} = 0$$

$$\frac{\overline{\partial \rho u_i}}{\partial t} + \frac{\overline{\partial (\rho u_i u_j)}}{\partial x_j} = -\frac{\overline{\partial p}}{\partial x_i} + \frac{\overline{\partial \tau_{ij}}}{\partial x_j}$$

compressible flows with Favre averaging $\widetilde{u_i} = \frac{\overline{\rho \, u_i}}{\overline{u_i}}$

Equations for mean flow

Almost same equations as before

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$

$$\frac{\partial \rho \overline{u_i}}{\partial t} + \frac{\partial (\rho \overline{u_i u_j})}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Since
$$\rho = const$$
.:
 $\overline{\rho \ u_i} = \rho \ \overline{u_i}$
 $\overline{\rho \ u_i u_j} = \rho \ \overline{u_i u_j}$

$$\bar{u}_i(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T u_i(x, t) dt \neq f(t)$$

Convection term is non-linear

$$\overline{u_i \, u_j} = \overline{(\overline{u_i} + u_i')(\overline{u_j} + u_j')} = \overline{\overline{u_i}} \ \overline{\overline{u_j}} + \overline{u_i' \, \overline{u_j}} + \overline{\overline{u_i} u_j'} + \overline{u_i' u_j'} = \overline{u_i} \ \overline{u_j} + \overline{u_i' u_j'}$$

giving

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$

$$\frac{\partial (\rho \overline{u_i} \overline{u_j})}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial \overline{\tau_{ij}}}{\partial x_j} \begin{pmatrix} \partial \left(\rho \overline{u'_i u'_j}\right) \\ \partial x_j \end{pmatrix}$$
new term

Equations for mean flow

Re-writing

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$

$$\frac{\partial (\rho \,\overline{u_i} \,\overline{u_j})}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial \overline{\tau_{ij}}}{\partial x_j} - \frac{\partial \left(\rho \,\overline{u'_i u'_j}\right)}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\overline{\tau_{ij}} + \tau^R_{ij}\right)$$

with

tensor of viscous stresses

$$\overline{\tau_{ij}} = 2\mu \overline{S_{ij}} = \mu \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right)$$

Reynolds stress tensor

$$\tau^R_{ij} = -\rho \ \overline{u'_i u'_j}$$

"Are the equations for turbulent flows the same as for laminar flows?" \rightarrow NO, there is another term !

Now different description: want to know $\overline{u_i}$ instead of u_i

Closure problem

RANS equations

$$\frac{\partial u_i}{\partial x_i} = 0$$

$$\frac{\partial (\rho \overline{u_i} \overline{u_j})}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial \overline{\tau_{ij}}}{\partial x_j} - \frac{\partial \left(\rho \overline{u'_i u'_j}\right)}{\partial x_j}$$

+ initial and boundary conditions

Problem describes mean flow (only)

Closure problem

RANS equations

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$

$$\frac{\partial (\rho \overline{u_i} \overline{u_j})}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial \overline{\tau_{ij}}}{\partial x_j} - \frac{\partial \left(\rho \overline{u'_i u'_j}\right)}{\partial x_j}$$

+ initial and boundary conditions

How to get $\overline{u'_i u'_i}$? (6 unknowns)

fluctuations u'_i are not present in this approach

term impossible to know without further info

equation system is not complete \rightarrow cannot be solved as stated \rightarrow equations are **"not closed"**

Further equations for closure?

Can devise equations for $\rho \overline{u'_i u'_j}$ i = 1, 2, 3 j = 1, 2, 3

$$\frac{\partial}{\partial x_{k}} \left(\mu \frac{\partial \overline{u'_{i}u'_{j}}}{\partial x_{k}} \right) - \frac{\partial}{\partial x_{k}} \left(\rho \overline{u'_{k}u'_{i}u'_{j}} + \overline{p'u'_{j}} \delta_{ik} + \overline{p'u'_{i}} \delta_{jk} \right) - \rho \overline{u'_{i}u'_{k}} \frac{\partial \overline{u}_{j}}{\partial x_{k}} - \rho \overline{u'_{j}u'_{k}} \frac{\partial \overline{u}_{i}}{\partial x_{k}} + \overline{p'\left(\frac{\partial u'_{i}}{\partial x_{j}} + \frac{\partial u'_{j}}{\partial x_{i}}\right)} - 2\mu \frac{\overline{\partial u'_{i}} \frac{\partial u'_{i}}{\partial x_{k}} \frac{\partial u'_{j}}{\partial x_{k}}}{\sqrt{1 - 1}}$$
red terms need to be

Can devise equations for $\rho u'_k u'_i u'_i$ etc.

 $\frac{\partial(\rho \overline{u_i' u_j'})}{\partial t} + \frac{\partial(\rho \overline{u}_k u_i' u_j')}{\partial x_k}$

$$\frac{\partial \left(\rho \overline{u'_i u'_j u'_k}\right)}{\partial t} + \frac{\partial \left(\rho \overline{u}_l \overline{u'_i u'_j u'_k}\right)}{\partial x_l} = \dots \quad \rho \overline{u'_i u'_j u'_k u'_l} \quad \dots$$

e modelled

generates even higher correlations \rightarrow cannot get a closed set of equations

Resort: devise a model for $\tau_{ii}^{R} = -\rho \overline{u_{i}' u_{i}'} \rightarrow do$, **turbulence modelling**, need to get 6 terms

Content

Description of turbulence

Modelling approaches for turbulent flow

RANS equations and closure problem

RANS models

RANS modelling near walls

LES and hybrids

Vortex detection

Final recommendations

Eddy viscosity models (EVM)

Eddy diffusivity

Transport of scalar *c*

$$\frac{\partial(\rho c)}{\partial t} + \frac{\partial(u_j \rho c)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma_c \frac{\partial c}{\partial x_j} \right) + S_c$$

Exact equation for mean

$$\frac{\partial(\rho \overline{e})}{\partial t} + \frac{\partial(\rho \overline{u_i} \overline{c})}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma_c \frac{\partial c}{\partial x_j} \right) + \frac{\partial(\rho \overline{u'_i c'})}{\partial x_j} + S_c \qquad \Gamma_c \text{ fluid property}$$

Modelled equation for mean

$$\frac{\partial(\rho \overline{c})}{\partial t} + \frac{\partial(\rho \overline{u_i} \overline{c})}{\partial x_j} = \frac{\partial}{\partial x_j} \left((\Gamma_c + \Gamma_t) \frac{\partial c}{\partial x_j} \right) + \overline{S_c} \qquad \Gamma_t \text{ depends on flow}$$

$$\Gamma_t = \frac{\mu_t}{\sigma_t}$$

Eddy diffusivity:

turbulent diffusion Γ_t

exchange of mass via turb. fluct.

turb. Prandtl. no. σ_t

 \leftarrow relate to \rightarrow

exchange of momentum via turb. fluct.

turbulent viscosity μ_t

How to describe turbulence

- Size of eddies (turbulent length scale) $L_t \equiv L$
- Velocity of dominating eddies $U_t \equiv V$
- Turbulent kinetic energy (TKE) $K \equiv k$
- Dissipation rate ε

....

- Turbulent frequency $\omega = 1/T_t$
- Theory of HIT: 2 quantities sufficient, but also minimum

Relations $V = K^{1/2}$, $\varepsilon = K^{3/2}/L$, $\omega = K^{1/2}/L$, ...

Dimensional analysis

 $\mu_{t} = c VL$ $\mu_{t} = c_{\mu} \rho K^{2} / \varepsilon$ $\mu_{t} = \rho K / \omega$

\rightarrow Variety of models possible

•••••

Example: $k - \varepsilon$ model

$$\mu_t = c_\mu \, \rho \frac{k^2}{\varepsilon}$$

Solve (modelled) equation for *k*

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho \bar{u}_j k)}{\partial x_j} = P_k - \rho \varepsilon + \frac{\partial}{\partial x_j} \left(\frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right)$$
$$\frac{\partial(\rho \varepsilon)}{\partial t} + \frac{\partial(\rho \bar{u}_j \varepsilon)}{\partial x_j} = c_{\varepsilon 1} \frac{\varepsilon}{k} P_k - \rho c_{\varepsilon 2} \frac{\varepsilon^2}{k} + \frac{\partial}{\partial x_j} \left(\frac{\mu_t}{\sigma_\varepsilon} \frac{\partial \varepsilon}{\partial x_j} \right)$$

Solve (modelled) equation for ${\ensuremath{\varepsilon}}$

(with suitable BC)

5 empirical constants \rightarrow take special cases, e.g. HIT, and get values of constants in these cases

- \rightarrow two additional transport equation
- \rightarrow then use μ_t in averaged momentum equation

 $P_k = -\rho \, \overline{u_i' u_j'} \, \frac{\partial \bar{u}_i}{\partial x_i}$

Example: $k - \omega$ model

$$\mu_t = \frac{\rho k}{\omega}$$

Solve (modelled) equation for k

$$P_{k} = -\rho \,\overline{u_{i}' u_{j}'} \,\frac{\partial \overline{u}_{i}}{\partial x_{j}}$$

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho \overline{u}_{j} k)}{\partial x_{j}} = P_{k} - c_{\mu} \rho \omega + \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t}}{\sigma_{k}} \frac{\partial k}{\partial x_{j}}\right)$$

$$\frac{\partial(\rho \omega)}{\partial t} + \frac{\partial(\rho \overline{u}_{j} \omega)}{\partial x_{j}} = c_{\omega 1} \rho \frac{\omega}{k} P_{k} - \rho c_{\omega 2} \omega^{2} + \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t}}{\sigma_{\varepsilon}} \frac{\partial \omega}{\partial x_{j}}\right)$$

Solve (modelled) equation for ω

(with suitable BC)

5 empirical constants \rightarrow ...

- \rightarrow two additional transport equation
- \rightarrow then use μ_t in averaged momentum equation

Example: Shear Stress Transport (SST) model [Menter 1994]

 $k - \varepsilon$ model

good away from walls

bad near walls

 $k - \omega$ model

bad away from walls

good near walls

Combine both models with blending function

and reduce μ_t close to wall by **limiter**

\rightarrow Most widely used in practice today

In practice

- Equations for $k, \varepsilon, ...$ more demanding than momentum equation (e.g. stability)
- Often different schemes than for momentum (more dissipative ones) to get convergence
- Often more iterations for these equations needed

Most widely used class of models in applications

Less than 2 transport equations for EVM ?

 $P_k = -\overline{u'_i u'_j} \overline{S_{ij}} \qquad P_k^{mod} = \mu_t 2 \overline{S_{ij}} \overline{S_{ij}}$

 $\varepsilon^{mod} = C_D \, k^{3/2} / L$

2) Need to get *L* from empirical considerations

- $L = l_m$ called "mixing length"
- empirical, flow dependent
- outdated, but concept still used, e.g. near walls

Less than 2 transport equations for EVM ?

Spalart-Allmaras model

1 Transport equation for $\widetilde{v_t}$, modified eddy viscosity (better behavior near walls)

$$\frac{\partial(\widetilde{\nu_t})}{\partial t} + \frac{\partial(\rho \overline{u}_j \widetilde{\nu_t})}{\partial x_j} = \dots + f(d) + \dots$$

d = wall distance

No need for second equation

since v_t computed by transport equation

Insert in momentum equation

Original version [Spalart, Allmaras 1994] modifications & improvements in literature

EVM models

EVM inherently isotropic

$$-\rho \,\overline{u'_{i}u'_{j}} = -\rho \left(\begin{array}{c} \overline{u'_{1}}^{2} \\ \overline{u'_{2}}u'_{1} \\ \overline{u'_{3}}u'_{1} \end{array}^{2} & \overline{u'_{1}}u'_{2} \\ \overline{u'_{3}}u'_{2} \end{array}^{2} & \overline{u'_{2}}u'_{3} \\ \overline{u'_{3}}u'_{2} \end{array} \right) = 2 \,\mu_{t} \,\overline{S_{ij}} - \rho \,\frac{2}{3}k \,\delta_{ij}$$

$$\mu_{t} \text{ same for all } S_{ji}$$

Attention: some effects cannot be covered by EVM - by construction

- Example: secondary flows generated by turbulence (2nd kind)
- Steady RANS model not suited for large-scale unsteady flows (vortex shedding)
- Check that model is suitable for flow considered

More than 2 equations for closure - RSM

Can devise equations for
$$\rho \overline{u'_i u'_j}$$
 $i = 1, 2, 3$ $j = 1, 2, 3$

 $\partial(\rho u_k u_i u)$

$$\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u'_i u'_j}}{\partial x_k} \right) - \frac{\partial}{\partial x_k} \left(\rho \overline{u'_k u'_i u'_j} + \overline{p' u'_j} \delta_{ik} + \overline{p' u'_i} \delta_{jk} \right) - \rho \overline{u'_i u'_k} \frac{\partial \overline{u}_j}{\partial x_k} - \rho \overline{u'_j u'_k} \frac{\partial \overline{u}_i}{\partial x_k} + \overline{p' \left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_k} \right)} - 2\mu \frac{\partial \overline{u'_i \partial u'_j}}{\partial x_k \partial x_k} \frac{\partial \overline{u}_j}{\partial x_k} \right)$$

Provide closure models for all the red terms → **"Reynolds Stress Model**" (**RSM**)

solve 6 equations for $\rho \overline{u'_i u'_i}$, closures need $\varepsilon \rightarrow$ solve additional PDE for ε

Properties

=

(-) More costly, less stable than EVM

(+) More general than EVM (e.g. swirl flows, secondary flows of second kind, ...)

red terms need to be modelled

Hierarchy of RANS models

In addition to averaged eq. for mass and momentum solve

0-equation model: algebraic relation for
$$\mu_t$$

1-equation model: one partial differential eq. $\Rightarrow \mu_t$ $-\rho \overline{u_i u_j} \stackrel{Mod}{=} \mu_t (.....) - ...$
2-equation model: two partial differential eq. $\Rightarrow \mu_t$ \Rightarrow to momentum equation

Reynolds Stress Model: 6 PDEs for $\overline{u_i'u_j'}$ and 1 for $\varepsilon \rightarrow -\rho \overline{u_i'u_j'}$

For each class HUGE number of variants

Choice of model highly depends on flow, research question, desired accuracy, ...

always do validation with similar case of reference

Content

Description of turbulence

Modelling approaches for turbulent flow

RANS equations and closure problem

RANS models

RANS modelling near walls

LES and hybrids

Vortex detection

Final recommendations

Near-wall turbulence

near-wall flow different from outer flow

- can be intermittent (but need not)
- damping of normal fluctuations by wall

 \rightarrow anisotropic turbulence

- very close to wall viscous effects dominant
- very thin BL for high Re: $\delta/x = 0.371 R e_x^{-1/5}$
- fine-scale turbulence for high Re

Near-wall turbulence

Turbulence near wall is different

velocity scale
$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}} \rightarrow u^+ = \frac{u}{u_{\tau}}$$

reference scale $l_{\tau} = \frac{v}{u_{\tau}} \rightarrow y^+ = \frac{y}{l_{\tau}}$

Reference case dp/dx = 0

 $\delta \ll L$

Near-wall turbulence

Turbulent fluctuations

- small scale near wall
- very **fine** grid in **all** directions for DNS etc.

Statistics

- change slowly along the wall $\sim L$
- change rapidly normal to wall ~ δ

- coarse grid parallel to wall
 - for RANS simulations
- Denser close to wall

1.0

0.5

0

0.5

1.0

x/δ

1.5

Wall treatment – 1

Resolve statistics

Refine grid near wall (generates large grids and higher cost) First grid point at $y^+ \approx 1$

Turbulence is different (local Reynolds number $y^+ = yu_{\tau}/v$ is small)

→ modify turbulence model, e.g. $k - \varepsilon$ model introduce damping functions for some terms models called **"low Reynolds number models**"

some turbulence models can do without modification e.g. $k - \omega$ model just use fine grid

DRESDEI

HPCFD07. Turbulence Modelling, - 41

Wall treatment – 2

Model part of near-wall statistics

Do not resolve the near-wall part of the BL First grid point at $y^+ > 30$ local Reynolds number $y^+ = y u_\tau / v$ is large

 \rightarrow use special conditions at 1st point so-called wall functions (WF) WF contain statistical information

grid much coarser normal to wall

lower cost

More modelling \rightarrow potentially higher modelling error

For very high *Re* no other choice

Example: periodic hill flow

[Mellen, Fröhlich, Rodi 2000]

\rightarrow for THIS case Problems with all RANS models, even RSM

[Jakirlic, 2012]

Content

Description of turbulence

Modelling approaches for turbulent flow

RANS equations and closure problem

RANS models

RANS modelling near walls

LES and hybrids

Vortex detection

Final recommendations

In between: Large Eddy Simulation (LES) and hybrid LES/RANS

DNS

variable u(x,t)

equations $\frac{\partial u}{\partial t} + \frac{\partial uu}{\partial x} + \dots$

very fine grid $N \sim Re^{9/4}$

In between: Large Eddy Simulation (LES) and hybrid LES/RANS

variable u(x,t)

equations

 $\frac{\partial u}{\partial t} + \frac{\partial u u}{\partial x} + \dots$

very fine grid $N \sim Re^{9/4}$

$$\bar{u}(x,t) = \int_{\Omega} G_{\Delta}(\xi - x)u(\xi,t)d\xi$$
$$u = \bar{u} + u' \qquad \text{filter = smoother}$$

$$\frac{\partial \bar{u}}{\partial t} + \frac{\partial \bar{u}\bar{u}}{\partial x} + \frac{\partial (\bar{u}\bar{u} - \bar{u}\,\bar{u})}{\underbrace{\partial x}} \dots$$

subgrid-scale model

fine grid, unsteady simulation

RANS

$$\bar{u}(x) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} u(x,t) dt$$

$$u = \bar{u} + u' \quad \text{average}$$

$$\frac{\partial \bar{u}}{\partial t} + \frac{\partial \bar{u} \bar{u}}{\partial x} + \frac{\partial (\bar{u'u'})}{\partial x} + \dots$$

$$= 0 \quad \text{turbulence model}$$

$$\boxed{\overbrace{O}}_{\overline{O}_{Z}}$$

$$\text{only coarse grid needed}$$

LES equations

• Filter

$$\bar{u}(x,t) = \int G_{\Delta}(x-\xi) \ u(\xi,t) \ d\xi$$

- Filter in space, not time
- $\overline{\bar{u}} \neq \overline{u}$ $\overline{u'} \neq 0$ $\overline{\bar{u}v} \neq \overline{u}\overline{v}$
- For $\Delta \to 0$ $\bar{u}(x) \to u(x)$
- If $\Delta = const$, commutes with derivative $\frac{\partial}{\partial t}$

$$\frac{\overline{\partial u}}{\partial x} = \frac{\partial \overline{u}}{\partial x}$$

Equation for large scales

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0$$

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial}{\partial x_j} (\overline{u_i} \overline{u_j}) + \frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} = \nu \frac{\partial^2 \overline{u_i}}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} (\overline{u_i} \overline{u_j} - \overline{u_i} \overline{u_j})$$

term unclosed → subgrid-scale model → e.g. eddy viscosity

LES modelling

• Energy transfer

E(k) = P(k) - D(k)

- Large scales
 - Large, energy carrying vorctices
 - resolved by grid
 - Production P resolved
- Small scales ("sub-grid scale", SGS)
 - Small eddies, little energy
 - dissipate energy
 - too small for grid, not resolved
 - main role of SGS model: dissipation at right amount

Subgrid-scale modelling & hybrid

Unclosed term $au_{ij} = \left(\overline{u_i u_j} - \overline{u_i} \overline{u_j}\right)$

Simplest model is eddy model of Smagorinski (1963)

$$\tau_{ij} - \frac{1}{3} \delta_{ij} \tau_{kk} \approx \tau_{ij}^{SM} = -\nu_t \, 2 \, \overline{S_{ij}}$$

algebraic relation

$$\nu_t = (C_S \Delta)^2 |\bar{S}|$$

with Δ step size of computational grid and constant C_s

Many other EVMs and other multi-scale approaches [Sagaut 2006, Fröhlich 2006]

Some methods use **modified RANS models** to get $v_t \rightarrow$ hybrid models

Example: Spalart Allmaras model with Δ as length scale \rightarrow "Detached Eddy Simulation" (DES) [Spalart 2009]

Classification of eddy-resolving methods

(also called scale-resolving methods)

[Fröhlich, von Terzi 2008]

Resolution

LES

 \rightarrow cutoff in inertial range

hybrid models

- \rightarrow often cutoff at larger scales
- \rightarrow risky, sufficient amount of resolved TKE needed

RANS model in in unstready mode (URANS) for self-generated unsteadiness (e.g. vortex shedding) **not recommended**.

Dissipation by model must be reduced \rightarrow better use true hybrid (DES, SAS, etc.)

Content

Description of turbulence

Modelling approaches for turbulent flow

RANS equations and closure problem

RANS models

RANS modelling near walls

LES and hybrids

Vortex detection

Final recommendations

Vortex detection

What is a vortex?

- Community has not agreed on exact definition
- Rule of thumb: "some kind of circular streamline"
- Vorticity $\omega = rot(u) = \nabla \times u$
 - Rotation of infinitisimaly small fluid element
 - NOT a criterion for a vortex

1) possible to have circular streamline but $\omega = 0$ (e.g. potential vortex)

- 2) possible to have straight streamlines (no vortex) with $\omega \neq 0$
 - e.g. laminar Poiseulle flow in straight duct
- ightarrow Do NOT use vorticity to detect vortices
 - The name is just missleading

Vortex detection

Rule of thumb: "some kind of circular streamline"

- But streamlines depend on velocity of observer, i.e. mean flow
- Further requirements (e.g. independent of coordinate system) \rightarrow use velocity gradients only
- Vast number of different criteria
- Good overview in [Epps 2017]

Here only selected Eulerian criteria

Basic idea:

- Define scalar quantity C(x, t) in whole flow field
- Define a threshold *C*_{crit}
- Identify all points $C > C_{crit}$ as part of a vortex (or $C < C_{crit}$)
- Draw level surface of points where $C = C_{crit} \rightarrow$ vortex shape

Color = distance from center plane [Schoppmann et al. 2021]

Pressure minimum

Idea: rotation \rightarrow centrifugal forces \rightarrow pressure minimum

Naive Procedure

- set C = p
- select $p_{crit} < 0$
- draw iso-surfaces of p_{crit}

Problem: if mean pressure changes in different regions of flow, universal threshold p_{crit} does not work

Better Procedure

- set $C = p' = p \overline{p}$
- select $p'_{crit} < 0$ (can use stagnation pressure as reference)
- draw iso-surfaces of p'_{crit}

Very simple

Gives large-scale vortices (cf. below)

The λ_2 - **criterion** [Jeong, Hussain 1995]

Basis in velocity gradient tensor

Decomposition

$$G_{ij} = \frac{\partial u_i}{\partial x_j}$$

$$G_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) = S_{ij} + \Omega_{ij}$$
strain rate tensor rotation rate tensor

Transport equation for S_{ij} neglecting unsteady and convective term, neglect viscous term

A11:

$$S_{ik}S_{kj} + \Omega_{ik}\Omega_{kj} = -\frac{1}{\rho}\frac{\partial^2 p}{\partial x_i \partial x_j}$$

If pressure Hessian $\frac{\partial^2 p}{\partial x_i \partial x_j}$ has two negative eigenvalues \rightarrow pressure minimum (e.v. are real as tensor symmetric) <u>Procedure</u>

- compute $S_{ik}S_{kj} + \Omega_{ik}\Omega_{kj}$
- compute eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3$. If $\lambda_2 < 0$ two negative eigenvalues
- set $C = \lambda_2$ and choose $C_{crit} < 0$ (value usually selected manually)

The λ_2 - criterion at work

Flow around deformable trapezoidal ribbon

→ Fluid-structure interaction, steady deformation

104.4 s

Color = distance from center plane [Schoppmann et al. 2021]

Often just "snow" with vortex criteria

[[]Na, Moin, 1998]

Spektral behaviour of criteria

quantity	"energy spectra" (square of Fourier coeff.)
p	$\mathcal{E}_p \sim \varepsilon^{4/3} k^{-7/3}$
u	$\mathcal{E}_u \sim \varepsilon^{2/3} k^{-5/3}$
ω	${\cal E}_\omega \sim arepsilon^{2/3} k^{1/3}$
Q	$\mathcal{E}_Q \sim \varepsilon^{4/3} k^{5/3}$
λ_2	$\mathcal{E}_{\lambda_2}\sim arepsilon^{4/3} k^{5/3}$
D	$\mathcal{E}_D \sim \varepsilon^2 k^3$
Dissipation	${\cal D}~\sim~k^{1/3}$

- $p \rightarrow$ extracts larger scales than u
- $\omega \rightarrow$ smaller scales than u
- $\lambda_2 \rightarrow$ much finer scales than u
- $Q \rightarrow$ much finer scales than u
- $D \rightarrow$ extremly fine scales

Increasing influence of numerical errors on structures extracted

→ Different criteria select different sizes of vortex structures !

 $\log k$

[Fröhlich, 2006, p.291]

DRESDEN concep

Often just "snow"

[Na, Moin, 1998]

u

D

Content

Description of turbulence

- Modelling approaches for turbulent flow
- RANS equations and closure problem

RANS models

- RANS modelling near walls
- LES and hybrids
- Vortex detection

Final recommendations

Final word

Select models suitable for given flow

Wintergerste, Casey, Best Practice Guidelines, ERCOFTAC, 2000, ISBN - 978-0-9955779-2-3 https://www.ercoftac.org/publications/ercoftac_best_practice_guidelines/

Always do serious validation

grid resolution study

size-of-domain study

sensitivity to choice of model for turbulence

comparison for benchmark cases similar to given flow

Data Bases

...

<u>https://turbmodels.larc.nasa.gov/</u> \rightarrow lots of benchmarking data for aerodynamics applications <u>https://kbwiki.ercoftac.org</u> \rightarrow very good data base for wide range of flows

Have fun with turbulence !

[Hafemann, Fröhlich, ISM]

Literatur

Van Dyke, M.: "An Album of Fluid Motion", Parabolic Press, 1982

Anderson, J.D. jr.: "Computational fluid Dynamics", McGraw-Hill, 1995

Pope, S.B.: "Turbulent Flows", Cambridge University Press, 2000

Michelassi, V., Chen, L.-W., Pichler, R., Sandberg, R.D.: "Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances", J. Turbomach., 137(7):71005, 2015

Fröhlich, J.: "Large-Eddy-Simulation turbulenter Strömungen", B.G. Teubner Verlag, 2006

Sagaut, P: "Large Eddy Simulation of Incompressible Flows", 3.Ed., Springer, 2006

Garnier, E., Adams, N.A., Sagaut, P:, "Large Eddy Simulation of Compressible Flows", Springer, 2009

Kim, J., Moin, P., Moser, R. D.: "Turbulence statistics in fully developed channel flow at low Reynolds number", J. Fluid Mech., 177:133, 1987

Kolmogorov, A.N.: "The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers". Doklady Akademii Nauk SSSR, 30:301-304, 1941

Menter, F.R.: "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32:1598-1605, 1994.

Spalart, P.R., Allmaras, S.R.: "A one-equation turbulence model for aerodynamic flows", La Recherche Aerospatiale, 1:5-21, 1994

Epps, B.E.: "Review of vortex identification methods", AIAA 2017-0989, 2017

Jeong, J., Hussain, F.: "On the identification of a vortex", Journal of Fluid Mechanics, 285:69–94, 1995

Schoppmann, K., Löhrer, B., Tschisgale, S., Fröhlich, J., de Langre, E.: An efficient solver for a Cosserat rod of non-constant width applied to a problem of fluid-structure interaction, PAMM, 21:1, 2021

Tschisgale, S. Löhrer, B., Meller, R., Fröhlich, J.: "Large eddy simulation of the fluid–structure interaction in an abstracted aquatic canopy consisting of flexible blades, Journal of Fluid Mechanics, 916:A43, 2021

Literatur

Na, Y.; Moin, P.: "Direct numerical simulation of a separated turbulent boundary layer", J. Fluid Mech. 374:379-405, 1998

Chong, M., Soria, J., Perry, A., Chacin, J., Cantwell, B., Na, Y.: "Turbulence structures of wall-bounded shear flows using DNS data". J. Fluid Mech. 357:225-247, 1998

Jakirlic, S.: "Deliverable D3.2-36 Extended excerpt related to the test case: Flow over a periodical arrangement of 2D hills", ERCOFTAC, 2012 Spalart, P.R.: "Detached-eddy simulation". Annual Review of Fluid Mechanics 41: 181-202, 2009

<u>Web pages</u> https://turbmodels.larc.nasa.gov https://kbwiki.ercoftac.org https://www.ercoftac.org/publications/ercoftac_best_practice_guidelines https://www.cfd-online.com/Forums

