
Introduction to Computational Fluid
Dynamics in High Performance Computing

Parallelization of Explicit and
Implicit Solvers

Rolf Rabenseifner, Christoph Niethammer

University of Stuttgart
High-Performance Computing-Center Stuttgart

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Parallelization of explicit or implicit solver [slides
1-42]

– PDE [4]  Discretization [4]  Explicit time-step integration [5]
– Algebraic viewpoint [6]  Implicit time-step [8]  no principle differences [10]
– Parallelization [11]  Domain Decomposition [12]  Load Balancing [13-17]
– Halo [18-20]  Speedup & Amdahl’s Law [20-26]
– Parallelization of Implicit Solver [27-31]  Optimization Hints [32-35]
– Vectorization & Cache Optimization [35-38]
– Solver-Classes & Red/Black (checkerboarder) [39-41]
– Literature [42]

• Parallel hardware [slides 43-49]

• Parallel programming models [slides 50-69]

• Parallelization scheme [slides 70-74]

Outline

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
2

Introduction to Computational Fluid
Dynamics in High Performance Computing

Motivation

• Most systems have some kind of parallelism
– Pipelining -> vector computing
– Functional Parallelism -> modern processor technology
– Combined instructions -> e.g. multiply-add as one instruction
– Hyperthreading
– Several CPUs on Shared Memory (SMP) with Multithreading
– Distributed memory with

• Message Passing or
• Remote Memory Access

• Most systems are hybrid architectures with parallelism on several levels
• High Performance Computing (HPC) platforms are typically

– Clusters (distributed memory) of
– SMP nodes with several CPUs
– Each CPU with several
– Floating point units, pipelining …

Node Interconnect

SMP nodes

CPUs
shared
memory

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
3

Introduction to Computational Fluid
Dynamics in High Performance Computing

• T/t = f(T,t,x,y,z)
• Example: Heat conduction T/t = T

• Discretization: lower index i,j  continuous range x,y (2-dim. example)
upper index t  continuous range t

• T/t = (Tij – Tij)/dt, 2T/x2 = (Ti+1,j – 2Ti,j + Ti–1,j)/dx2 , …

• (Tij – Tij)/dt = ((Ti+1,j – 2Ti,j + Ti–1,j)/dx2 + (Ti,j+1 – 2Ti,j + Ti,j–1)/dy2)

Partial Differential Equation (PDE) and Discretization

t+1 t ? ? ? ? ? ?

t+1 t

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
4

Introduction to Computational Fluid
Dynamics in High Performance Computing

• If the right side depends only on old values Tt, i.e., ? = t

• Tij = Tij + ((Ti+1,j – 2Ti,j + Ti–1,j)/dx2 + (Ti,j+1 – 2Ti,j + Ti,j–1)/ dy2)dt

• You can implement this, e.g., as two nested loops:
do i=0,m-1

do j=0,n-1
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) +

c5T(i,j-1)
end do

end do

• Vectorizable loop, without indirect addressing!

Explicit time-step integration

t+1 t t t t t t t

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
5

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Explicit scheme:

• Tij = (1+c1)Tij + c2Ti+1,j + c3Ti–1,j + c4Ti,j+1 + c5Ti,j–1

• Can be viewed as a sparse-matrix-multiply

– Choose a global numbering
i,j = 0,0; 0,1; … 0,n-1; 1,0; 1,1; … 1,n-1; … m-1,0; … m-1,n-1

 I = 0; 1; … n-1; n; n+1; … 2n-1; … (m-1)n; … mn-1

– (Tij)i=0..m-1, j=0..n-1 is view as a vector (TI)I=0..mn-1

– T = (I+A)T

• Is never programmed as a general sparse-matrix-multiply!

• This algebraic view-point is important to understand the parallelization of
iterative solvers on the next slides

Algebraic view-point

t+1 t t t t t

t+1 t

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
6

Introduction to Computational Fluid
Dynamics in High Performance Computing

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
7

Matrix notation T = AT

A = (AIJ)I=0, mn–1 =
J=0, mn–1

c1 c4 c2
c5 c1 c4 c2

c5 c1 c4 … c2
… … c4 c2
… c5 c1 c2

c3 c1 c4 c2
c3 c5 c1 c4 c2

c3 c5 c1 c4 … c2
c3 … … c4 c2

c3 … c5 c1
c2

… … … …
… … … …

5 point stencil for computing, e.g.,

TI=6 = Ti=1, j=2

Algebraic and physical indices

t+1 t+1

Representing
physical relation to vertical

and to horizontal neighbors

t+1 t

Introduction to Computational Fluid
Dynamics in High Performance Computing

• The right side depends also on new values Tt+1,
i.e., ? = t+1 or a combination of old and new values

• Tij = Tij + ((Ti+1,j – 2Ti,j + Ti–1,j)/dx2 + (Ti,j+1 – 2Ti,j + Ti,j–1)/ dy2)dt

• You have to implement a global solver in each time-step

• (1–c1)Tij – c2Ti+1,j – c3Ti–1,j – c4Ti,j+1 – c5Ti,j–1 = Tij

• Using global numbering I=0..(nm-1) and matrix notation (I–A)T = T
• c1, c2, … normally depend also on i,j (and possibly also on t)

• (I–A)T = T can be solved with iterative solvers, e.g., CG,
with major internal compute step pnew= Apold (sparse-matrix-vector-multiply)

Implicit time-step: Solving a PDE

t+1 t t+1 t+1 t+1 t+1 t+1 t+1

t+1 t+1 t+1 t+1 t+1 t

t+1 t

t+1 t

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
8

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Explicit: (In each [time] step,) field variables are updated using
neighbor information (no global linear or nonlinear solves)

• Implicit: Most or all variables are updated in a single global linear
or nonlinear solve

• Both categories can be expressed (in the linear case) with a
sparse-matrix-vector-multiply
– Explicit: T = (I+A)T [the 2- or 3-dim T is here expressed as a vector

– Implicit: (I–A)T = T over the global index I=0..(mn-1)]

• Vector T is a logically serialized storage of the field variables
• Matrix A is sparse

– The rows reflect same position as in T,
i.e., corresponds to one field variable

– Elements reflect needed neighbor information

Solver Categories (used in this talk)

t+1 t

t+1 t

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
9

Introduction to Computational Fluid
Dynamics in High Performance Computing

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
10

• Both categories can be expressed (in the linear case) with a sparse matrix
– Explicit: T = (I+A)T [the 2- or 3-dim T is here expressed as a

vector]
– Implicit: (I–A)T = T

• Implicit iterative solver:
– Major (time-consuming) operation is sparse-matrix-vector-multiply

• Ap with p is an interims vectors

– Same operation as in the explicit scheme
•  Focus of this talk

– Parallelization of simulation codes based on
– Sparse matrix-vector-multiply
– Domain decomposition for explicit time-step integration
– Same methods can be used for Ap in implicit solvers

No principle differences between implicit and explicitt+1 t

t+1 t

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Shared memory:
– Independent iterations are distributed among threads,
– Threads = parallel execution streams (on several CPUs)

on the same shared memory
– Mainly used to parallelize DO / FOR loops
– E.g., with OpenMP

• Distributed memory:
– Parallel processes, each with own set of variables
– Message Passing between the processes, e.g., with MPI
– Matrix (physically stored, or only logically)

and all vectors are distributed among the processes
– Optimal data distribution based on domain decomposition

Parallelization

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
11

Introduction to Computational Fluid
Dynamics in High Performance Computing

• The simulation area (grid, domain) must be divided into several
sub-domains

• Each sub-domain is stored in and calculated by a separate process

Domain Decomposition

0 1 2 6 7 8

3 4 5 9 10 11

12 13 14 18 19 20

15 16 17 21 22 23

Cartesian
0 2

3
1

4
5

6 10

9
8

7 11

12 15

16
13

17 14

21 20

23
22

19

18

Unstructured

Examples with 4 sub-domains

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
12

Introduction to Computational Fluid
Dynamics in High Performance Computing

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
13

• Distribution of data and work implies
– Idle time, if the work load distribution is not balanced
– Additional overhead due to communication needs on

sub-domain boundaries
– Additional memory needs for halo (shadow, ghost) cells

to store data from neighbors

• Major optimization goals:
– Each sub-domain

has the same work load
 optimal load balance

– The maximal boundary
of all sub-domains is minimized
 minimized communication

Load Balancing and Communication Optimization

du/dx = (–ui +ui+1)/Δx

Communication Halo cells

Introduction to Computational Fluid
Dynamics in High Performance Computing

If each grid point requires same work:
• 2 dimensions:

Each sub-domain (computed by one CPU) should
– Have the same size  optimal load balance
– And should be quadratic  minimal communication

• Solution with factorization of the number of available processors
– With MPI_Dims_create()

• Caution: MPI_Dims_create tries to factorize the number of processes as
quadratic as possible, e.g., 12 = 4 x 3,

• But one must make the number of grid points quadratic!
• Example – Task: Grid with 1800 x 580 grid points on 12 processors

Solution: 6 x 2 processes

Cartesian Grids

580
290

300

1800

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
14

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Solution for any number of available processors
– Two areas with different shape of their sub-domains

• Horizontal split

• Vertical split

Cartesian Grids (2-dim, continued)

Sub-domains at the split
boundary have a more
complicated
neighborhood

Examples with
41 sub-domains
and 1800 x 580 grid

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
15

Introduction to Computational Fluid
Dynamics in High Performance Computing

• 3 dimensions
– Same rules as for 2 dimensions
– Usually optimum with 3-dim. domain decomposition & cubic sub-domains

Cartesian Grids (3-dim)

Splitting in
• one dimension:

communication
= n2*2*w *1

• two dimensions:
communication

= n2*2*w *2 / p1/2

• three dimensions:
communication

= n2*2*w *3 / p2/3

w = width of halo
n3 = size of matrix
p = number of processors
cyclic boundary
—> two neighbors

in each direction

optimal for p>11

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
16

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Mesh partitioning with special load balancing libraries
– Metis (George Karypis, University of Minnesota)
– ParMetis (internally parallel version of Metis)

• http://www.cs.umn.edu/~karypis/metis/metis.html
– Scotch & PT-Scotch (Francois Pellegrini, LaBRI, France)

• http://www.labri.fr/perso/pelegrin/scotch/
– Jostle (Chris Walshaw, University of Greenwich, GB)

• http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
– Goals:

• Same work load in
each sub-domain

• Minimizing the
maximal number of
neighbor-connections
between sub-domains

Unstructured Grids

0 2

3
1

4
5

6 10

9
8

7 11

12 15

16
13

17 14

21 20

23
22

19

18

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
17

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Stencil:
– To calculate a new grid point (),

old data from the stencil grid points () are needed
• E.g., 9 point stencil

• Halo
– To calculate the new grid points of a sub-domain,

additional grid points from other sub-domains are needed.
– They are stored in halos (ghost cells, shadows)
– Halo depends on form of stencil

Halo

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
18

Introduction to Computational Fluid
Dynamics in High Performance Computing

One iteration in the
• Serial code:

– Xnew = function(xold)
– Xold = xnew

• Parallel code:
– Update halo

[=Communication, e.g., with
4 x MPI_Sendrecv]

– Xnew = function(xold)
– Xold = xnew

Communication: Send inner data into halo storage

Examples with 12 sub-domains and
horizontally cyclic boundary conditions

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
19

Introduction to Computational Fluid
Dynamics in High Performance Computing

• MPI non-blocking send must not send
inner corner data into more than one direction
– Use MPI_Sendrecv
– Or non-blocking MPI_Irecv

• Stencil with diagonal point, e.g.,

– i.e., halos include corners  substitute small corner messages:
• one may use 2-phase-protocol:
• normal horizontal halo communication
• include corner into vertical exchange

Corner problems

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
20

Introduction to Computational Fluid
Dynamics in High Performance Computing

Tparallel, p = f Tserial + (1-f) Tserial / p + Tcommunication + TidleCPU / p

Tserial, wall-clock time needed with one processor
f percentage Tserial of that can not be parallelized
Tparallel, p wall-clock time needed with p processor
Tcommunication average wall-clock time needed communication

on each CPU
TidleCPU idle CPU-time due to bad load balancing
Sp speedup on p processors := Tserial / Tparallel, p
Ep efficiency on p processors := Sp / p

Tparallel, p = f Tserial + (1-f) Tserial / p + Tcommunication + TidleCPU / p

Ep = (1 + f(p-1) + Tcommunication / (Tserial/p) + TidleCPU / Tserial) –1

 1 – f(p-1) – Tcommunication / (Tserial/p) – TidleCPU / Tserial

should be << 1 << 1 << 1

Speedup

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
21

Introduction to Computational Fluid
Dynamics in High Performance Computing

Tparallel, p = f· Tserial + (1-f)· Tserial / p
f ... sequential part of code that can not be done in parallel

Sp = Tserial / Tparallel, p = 1 / (f + (1-f) / p)

For p —> infinity, speedup is limited by Sp < 1 / f

Amdahl’s Law (if neglecting Tcommunication and TidleCPU)

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

S
p

ee
d

u
p

 S
p

p = #processors

Sp = p (ideal speedup)

f=0.1% => Sp < 1000

f= 1% => Sp < 100

f= 5% => Sp < 20

f= 10% => Sp < 10

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
22

Introduction to Computational Fluid
Dynamics in High Performance Computing

Tparallel, p = f· Tserial + (1-f)· Tserial / p
f ... sequential part of code that can not be done in parallel

Sp = Tserial / Tparallel, p = 1 / (f + (1-f) / p)

For p —> infinity, speedup is limited by Sp < 1 / f

Amdahl’s Law (double-logarithmic)

1

10

100

1000

1 10 100 1000
p = #processors

S
p

ee
d

u
p

 S
p

Sp = p (ideal speedup)

f=0.1% => Sp < 1000

f= 1% => Sp < 100

f= 5% => Sp < 20

f= 10% => Sp < 10

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
23

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Only ratio – no absolute performance value!

• Sometimes super-scalar speedup: Sp > p
– Reason:

For speedup measurement, the total problem size is constant
 The local problem size in each sub-domain may fit into cache

• Scale-up:
– Sc(p,N) = N / n with T(1,n) = T(p,N)
– With T(p,N) = Time to solve problem of size N on p processors
– Compute larger problem with more processors in same time

• Weak scaling:
– T(p, p•n) / T(1,n) is reported,
– I.e., problem size per process (N = p•n) is fixed
– Constant ratio = 100% efficiency

Speedup problems

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
24

Introduction to Computational Fluid
Dynamics in High Performance Computing

• 2-dim:
– 9-point-stencil or
– 300x300 grid points on each sub-domain
– 16 byte communication data per grid point
– 100 FLOP per grid point
– 20 MB/s communication bandwidth per process

(this bandwidth must be available on all processes at the same time)
– 1 GFLOP/s peak processor speed
– 10% = real application / peak processor speed
– Tcommunication = (9-1) · 300 · 16 byte / 20 MB/s = 1.92 ms
– Tserial / p = 300 · 300 · 100 FLOP / (1 GFLOP/s · 10%) = 90 ms
 Tcommunication / (Tserial/p) = 1.92 ms / 90 ms = 0.021 << 1
 Only 2.1 % reduction of the parallel efficiency due to communication

Example (2-dim)

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
25

Introduction to Computational Fluid
Dynamics in High Performance Computing

• 3-dim:
– 13-point-stencil
– 50x50x50 grid points on each sub-domain
– 16 byte communication data per grid point
– 100 FLOP per grid point
– 20 MB/s communication bandwidth per process

(this bandwidth must be available on all processes at the same
time)

– 1 GFLOP/s peak processor speed
– 10% = real / peak processor speed
– Tcommunication = (13-1) · 50 · 50 · 16 byte / 20 MB/s = 24 ms
– Tserial / p = 50 · 50 · 50 · 100 FLOP / (1 GFLOP/s · 10%) = 125 ms
Tcommunication / (Tserial/p) = 24 ms / 125 ms = 0.192 < 1
19 % reduction of the parallel efficiency due to communication

Example (3-dim)

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
26

Introduction to Computational Fluid
Dynamics in High Performance Computing

• The solution path:
Real world
 Partial differential equation
 Discretization (2/3-dimensions = indices i,j,k)
Global index (i,j,k)  I
 Algebraic equation Ax=b

with sparse-matrix A = (a I,J) I=1..N,J=1..N
boundary vector b = (b I) I=1..N
solution vector x = (x I) I=1..N

• Solve Ax=b with iterative solver:
Major computational steps:
– Sparse-matrix-vector-multiply: Av, with v=interims vector
– Scalar product: (v1,v2)

Implicit Iterative Solver

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
27

Introduction to Computational Fluid
Dynamics in High Performance Computing

Initialize matrix A; Initialize boundary condition vector b;
Initialize i_max ( size of A); Initialize ε (>0); Initialize solution vector x;
/* p = b – Ax ; */ p = x; /* Reason: */
/* substituted by */ v = Ap; /* Parallelization halo needed */

p = b – v; /* For same vector (p) as in loop */
r = p;
 = (|| r ||2)2 ;
for (i=0; (i < i_max) && ( > ε); i++)
{ v = Ap;

 =  / (v,p)2 ;
x = x + p;
r = r – v;
new = (|| r ||2)2 ;
p = r + (new/)p;
 = new;

}
Print x, , ||b–Ax||2;

Example: CG Solver

See, e.g.,
Andreas Meister: Numerik linearer Gleichungssysteme.
Vieweg, 2nd ed., 2005, p. 124.

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
28

Introduction to Computational Fluid
Dynamics in High Performance Computing

To implement domain decomposition:
• Go back to 2- or 3-dim domain with the 2 or 3 index variables (i,j)

or (i,j,k)
– A = (ai,j,k; i’,j’,k’) i=1..l, j=1..m, k=1..n ; i’=1..l, j’=1..m, k’=1..n

– p = (pi,j,k) i=1..l, j=1..m, k=1..n

– Matrix-vector-multiply:
do (i=1, i<l, i++)

do (j=1, j<m, j++)
do (k=1, k<n, k++)

vi,j,k = 0
sparse (unrolled) loops over i’, j’, k’

vi,j,k = vi,j,k + ai,j,k; i’,j’,k’ * pi’,j’,k’

• Domain decomposition in the 2/3-dim space
(and not in the 1-dim algebraic space I=1..N)

Parallel Iterative Solver

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
29

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Matrix A
• Boundary condition vector b
• Solution vector x
• Residual vector r
• Gradient vector p

• Halos are needed in this algorithm
only for p
(only p is multiplied with A)

Distributed Data Initialize matrix A;
Initialize boundary condition vector b;
Initialize i_max ( size of A); Initialize ε (>0);
Initialize solution vector x;
p = x;
v = Ap;
p = b – v;
r = p;
 = (|| r ||2)2 ;
for (i=0; (i < i_max) && ( > ε); i++)
{ v = Ap;

 =  / (v,p)2 ;
x = x + p;
r = r – v;
new = (|| r ||2)2 ;
p = r + (new/)p;
 = new;

}
Print x, , ||b–Ax||2;

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
30

Introduction to Computational Fluid
Dynamics in High Performance Computing

Operation that include communication
• Halo exchange for vector p

to prepare matrix-vector-multiply Ap
• Scalar product (v1,v2)

– Algorithm:
• Compute local scalar product
• Compute global scalar product

with MPI_Allreduce(…, MPI_SUM,…)
over all local scalar product values

• Norm || r ||2
– Algorithm: same as scalar product

Operations without communication
• Matrix-vector-multiply: v = Ap

– requires updated halo
• AXPY: x or y = x + y

Initialize matrix A;
Initialize boundary condition vector b;
Initialize i_max ( size of A); Initialize ε (>0);
Initialize solution vector x;
p = x;
v = Ap;
p = b – v;
r = p;
 = (|| r ||2)2 ;
for (i=0; (i < i_max) && ( > ε); i++)
{ v = Ap;

 =  / (v,p)2 ;
x = x + p;
r = r – v;
new = (|| r ||2)2 ;
p = r + (new/)p;
 = new;

}
Print x, , ||b–Ax||2;

Parallel Operations

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
31

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Preserve regular pattern of the matrix!

• Don’t use indexed array access (p(indexarr(i)),
if it is not really necessary

• Always use many arrays
REAL :: t(1000000), p(1000000), v(1000000)

• (instead of one array of a structure)
TYPE data_struct_of_one_point

REAL :: t
REAL :: p
REAL :: v

END TYPE data_struct_of_one_point
TYPE (data_struct_of_one_point) :: points(1000000)

Parallel Solver – Optimization Hints

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
32

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Non-cubic may cause better computational efficiency
– 50x50x50 cubic  boundary = 6 x 50 x 50 = 15,000
– vs. 100x25x50  boundary = 2 x 100 x 25

+ 2 x 100 x 50
+ 2 x 25 x 50 = 17,500

– 16 % larger boundary, and
– (expecting totally ~10% communication)
 1.6% additional communication overhead

– 100% longer most inner loop,
which may cause more than 1.6 % computational speedup!!!

General Optimization Hints

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
33

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Overlapping of communication and computation
– On MPP (massively parallel processors) systems

and clusters of single-CPU-nodes:
Overlapping normally not needed

– Advantages on clusters of SMP (shared memory) nodes
(hybrid hardware with hybrid programming model):
1 CPU communicates while other CPUs compute

– One must separate
• Computation that needs halo data
 cannot be overlapped with communication

• Computation of grid points that do not need halo data
 can be overlapped with communication

• Preserve pipelining / vectorization with your parallelization

General Optimization Hints (continued)

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
34

Introduction to Computational Fluid
Dynamics in High Performance Computing

• c = a + b

Pipelining and Instruction Chaining /
Vectorization

i=1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

11 

Startup-time
of the pipeline

1 cycle

a result value is stored
in each cycle

time

Each unit of the
pipeline is active

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
35

Introduction to Computational Fluid
Dynamics in High Performance Computing

• How can I implement the loops efficiently
do i=0,m-1

do j=0,n-1
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) + c5T(i,j-1)

end do
end do

• On vector-systems:
– T and Tnew are defined on (-1:m, -1:n),
– But the loop is done only on (0:m-1, 0:n-1)
– The most-inner loop may be too small for good vectorization

[e.g., on NEC SX-6, vector length should be a multiple of 256]

– Interpret arrays as 1-dimensional T, Tnew(0 : (m+2)(n+2)-1)
– One loop over all elements
– Ignore senseless values in Tnew on boundary

How to implement sparse-matrix-vector-multiply I

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
36

Introduction to Computational Fluid
Dynamics in High Performance Computing

• How can I implement the loops efficiently
do i=0,m-1

do j=0,n-1
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) + c5T(i,j-1)

end do
end do

• On cache-based systems:
– Move small squares (2-dim) or cubes (3-dim) over the total area:

do iout=0,m-1,istride

do jout=0,n-1,jstride
do i=iout, min(m-1, iout+istride-1)

do j=jout, min(n-1, jout+jstride-1)
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) + c5T(i,j-1)

end do
end do

end do
end do

How to implement sparse-matrix-vector-multiply II

5 loaded stencil values are reused
via cache in the next i or j iterations
e.g., istride=jstride=10
 100 inner iterations need 500 T-values
 140 from memory used for

+ 360 from cache 900 FLOP
Fall 2023

HPCDF08 - Parallelization and Iterative
Solver

37

Introduction to Computational Fluid
Dynamics in High Performance Computing

Important principle  Single source!!!

• #ifdef _OPENMP
special OpenMP parallelization features

#endif

• #ifdef USE_MPI
MPI_Init(…);
MPI_Comm_size(…, &size); MPI_Comm_rank(…, &my_rank);

#else
size=1; my_rank=0;

#endif
…

• #ifdef USE_CACHE
cache-version of sparse-matrix-vector-multiply

#else
vector-version

#endif

How to implement sparse-matrix-vector-multiply III

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
38

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Parallel step algorithms:
– xiter := func(xiter–1)
– e.g. Jacobi, CG, Richardson, ...
– No problems with vectorization and parallelization

• Single step algorithms:
– xiter := func(xiter–1, some elements of xiter)
– E.g. Gauß-Seidel, SOR, …
– Vectorization and parallelization is possible with red/black

(checkerboard) method

Classes of iterative solvers

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
39

Introduction to Computational Fluid
Dynamics in High Performance Computing

Single step algorithms
• Example: SOR

– xm+1,i := (1–)xm,i +  (bi –  aij xm+1,j –  aij xm,j) (m = #iteration)

– If only direct neighbor exists,
i.e. aij  0 for j = “i+x”, “i–x”, “i+y”, “i–y”

– and “i–x” and “i–y” are indexes less than i, then

 xm+1,i

:= (1–)xm,i +  (bi –ai,i–xxm+1,i–x–ai,i–yxm+1,i–y–ai,i+xxm,i+x–ai,i+yxm,i+y)

Parallelization of single-step algorithms

aii

i–1

j=1

n

j=i

aii

Left and lower x value must be already computed!
Problem for parallelization and vectorization!

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
40

Introduction to Computational Fluid
Dynamics in High Performance Computing

• First, compute all red checkers, then communicate boundary
• Second, compute all black checkers and communicate boundary
• Inside of each checker: Use original sequence
• Parallel version is not numerically identical to serial version!!!

Red/black (checkerboard) ordering
• 6 nodes

• Each node has
– 2 red and
– 2 black checkers

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
41

Introduction to Computational Fluid
Dynamics in High Performance Computing

• G. Fox, M. Johnson, G. Lyzenga, S. Otto, S. Salmon, D. Walker:
Solving Problems on Concurrent Processors.
Prentice-Hall, 1988.

• Barry F. Smith, Petter E. Bjørstad, William D. Gropp:
Domain Decomposition
Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, 1996.

• Andreas Meister:
Numerik linearer Gleichungssysteme.
Vieweg, 1999.

Literature

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
42

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Parallelization of explicit or implicit solver
• Parallel hardware
• Parallel programming models
• Parallelization scheme

Outline

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
43

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Shared Memory
– SMP = Symmetric multiprocessing

• Distributed Memory
– DMP = Distributed memory parallel

• Hierarchical memory systems
– Combining both concepts

Major Parallel Hardware Architectures

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
44

Introduction to Computational Fluid
Dynamics in High Performance Computing

Multiprocessor - shared memory

Memory-Interconnect

core core core core

memory
bank

memory
bank

memory
bank

memory
bank

• All CPUs are connected to all memory banks with same speed
• Uniform Memory Access (UMA)
• Symmetric Multi-Processing (SMP)
• Network types, e.g.

• Crossbar  independent access from each CPU
• BUS  one CPU can block the memory access of the other CPUs

Thanks to Alfred Geiger and Michael Resch (HLRS):
Some pictures and slides are from their Parallel Programming lectures.

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
45

Introduction to Computational Fluid
Dynamics in High Performance Computing

Multicomputer - distributed memory

Node-Interconnect

CPU CPU CPU CPU

Memory Memory Memory Memory

Node or PE (processing element)

• Nodes are coupled by a node-interconnect
• Each CPU: – Fast access to its own memory

– but slower access to other CPU’s memories
• Non-Uniform memory Access (NUMA)
• Different network types, e.g. BUS, torus, crossbar

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
46

Introduction to Computational Fluid
Dynamics in High Performance Computing

Hybrid architectures

Node Interconnect

• Most modern high-performance computing (HPC) systems are
clusters of SMP nodes

• SMP (symmetric multi-processing) inside of each node
• DMP (distributed memory parallelization) on the node

interconnect

SMP
node

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
47

Introduction to Computational Fluid
Dynamics in High Performance Computing

Interconnect topologies

3-D torus (8x8x3 nodes)

Fat tree

switch switch switch switch

switch

switch

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
48

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Parallelization of explicit or implicit solver
• Parallel hardware
• Parallel programming models

– Parallelization Strategies [51-55]  Models [56]  OpenMP [56-58]  OpenMP-tasks [59-61]  MPI
[62-66]

– Limitations [67-68]  Advantages & Challenges [69]

• Parallelization scheme

Outline

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
49

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Two major resources of computation:
– Processor
– Memory

• Parallelization means
– Distributing work to processors
– Distributing data (if memory is distributed)

and
– Synchronization of the distributed work
– Communication of remote data to local processor (if memory is distr.)

• Programming models offer a combined method for
– Distribution of work & data, synchronization and communication

Parallelization strategies — hardware resources

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
50

Introduction to Computational Fluid
Dynamics in High Performance Computing

Distributing Work & Data
do i=1,100
 i=1,25

i=26,50
i=51,75
i=76,100

Work decomposition
• Based on loop decomposition

Domain decomposition
• Decomposition of work and

data is done in a higher model,
e.g. in the reality

A(1:20, 1: 50)
A(1:20, 51:100)
A(21:40, 1: 50)
A(21:40, 51:100)

Data decomposition
• All work for a local portion

of the data is done by the
local processor

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
51

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Synchronization
– Is necessary
– May cause

• Idle time on some processors
• Overhead to execute the synchronization primitive

Synchronization

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

BARRIER synchronization

Do i=1,100
a(i) = b(i)+c(i)

Enddo
Do i=1,100

d(i) = 2*a(101-
i)

Enddo

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
52

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Communication is necessary on the boundaries

– E.g. b(26) = a(26) + f*(a(25)+a(27)-2*a(26))

– E.g. at domain boundaries

Communication

Do i=2,99
b(i) = a(i) + f*(a(i-1)+a(i+1)-2*a(i))

Enddo

a(1:25), b(1:25)
a(26,50), b(51,50)
a(51,75), b(51,75)
a(76,100), b(76,100)

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
53

Introduction to Computational Fluid
Dynamics in High Performance Computing

OpenMP
– Shared Memory Directives
– To define the work decomposition
– No data decomposition
– Synchronization is implicit (can be also user-defined)

• OpenMP – task based parallelization
– Task based parallelization
– User specifies tasks and task dependencies with directives
– Parallelization (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– By calling MPI communication library-routines

Major Programming Models

1

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
54

Introduction to Computational Fluid
Dynamics in High Performance Computing

Shared Memory Directives – OpenMP I

Real :: A(n,m), B(n,m)

do j = 2, m-1

do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do

end do

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
55

Introduction to Computational Fluid
Dynamics in High Performance Computing

Shared Memory Directives – OpenMP II

Master ThreadSingle Thread

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
56

Introduction to Computational Fluid
Dynamics in High Performance Computing

• OpenMP
– Standardized shared memory parallelism
– Thread-based
– The user has to specify the work distribution explicitly with directives
– No data distribution, no communication
– Mainly loops can be parallelized
– Compiler translates OpenMP directives into thread-handling
– Standardized since 1997

• Automatic SMP-Parallelization
– E.g., Compas (Hitachi), Autotasking (NEC)
– Thread based shared memory parallelism
– With directives (similar programming model as with OpenMP)
– Supports automatic parallelization of loops
– Similar to automatic vectorization

Shared Memory Directives – OpenMP III

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
57

Introduction to Computational Fluid
Dynamics in High Performance Computing

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• OpenMP – task based parallelization
– Task based parallelization
– User specifies tasks and task dependencies with directives
– Parallelization (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

Major Programming Models – Task based
programming

1

2

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
58

Introduction to Computational Fluid
Dynamics in High Performance Computing

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
59

Basic Idea:
• Programmer defines tasks as basic units for parallel execution where a

task represents a more or less self-contained part of the code.
• Runtime decides on the execution of the tasks, managing the difficult

problem of their ordering and hardware placement

Task based Parallelisation

Program
Code

#include <stdio.h>
#include <stdlib.h>

#define NB 64 /**< number

int *A[NB][NB]; /**
static int sleep_time;
static int loop;
/** initialize data block array
*/

void init_matrix(int*
A[NB][NB]) {

int i, j;
for(i = 0; i < NB; i++) {

for(j = 0; j < NB; j++

Program
Code

#include <stdio.h>
#include <stdlib.h>

#define NB 64 /**< number

int *A[NB][NB]; /**
static int sleep_time;
static int loop;
/** initialize data block array
*/

void init_matrix(int*
A[NB][NB]) {

int i, j;
for(i = 0; i < NB; i++) {

for(j = 0; j < NB; j++

Core 1 Core 1

Core 1 Core 1

RuntimeDefine
Tasks

Introduction to Computational Fluid
Dynamics in High Performance Computing

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
60

• Task + dependency model introduced with OpenMP 4.0
• OpenMP tasks defined with #prgams omp task

• Dependencies between tasks specified via input and
output prameters using depend(in|out) clause

• Uses the task set of a surrounding parallel region as
workers to execute the tasks

Task based Parallelisation – OpenMP

Introduction to Computational Fluid
Dynamics in High Performance Computing

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
61

Task based Parallelisation – OpenMP Example

#pragma omp parallel
{
#pragma omp single
{

int x, y, z;
#pragma omp task depend(out: x)

x = init();
#pragma omp task depend(in: x) depend(out: y)

y = f(x);
#pragma omp task depend(in: x) depend(out: z)

z = g(x);
#pragma omp task depend(in: y, z)

finalize(y, z);
}}

Introduction to Computational Fluid
Dynamics in High Performance Computing

Major Programming Models – MPI

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• OpenMP – task based parallelisation
– Task based parallelisation
– User specifies tasks and task dependencies with directives
– Parallelisation (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– By calling MPI communication library-routines

1

2

3

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
62

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Each processor in a message passing program runs a sub-program
– Written in a conventional sequential language, e.g., C or Fortran,
– Typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank
– Returned by special library routine

• Communication via special send & receive routines (message passing)

Message Passing Program Paradigm – MPI I

myrank=0

data

sub-
program

myrank=1

data

sub-
program

myrank=2

data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
63

Introduction to Computational Fluid
Dynamics in High Performance Computing

Additional Halo Cells – MPI II

Halo
(Shadow,
Ghost cells)

User defined communication

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
64

Introduction to Computational Fluid
Dynamics in High Performance Computing

Message Passing – MPI III

Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ...
A(i+1,j)

... A(i,j-1) ...
A(i,j+1)

end do
end do

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m)
jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors,

! storing into the halo cells

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of
A

Data definition

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
65

Introduction to Computational Fluid
Dynamics in High Performance Computing

• MPI (Message Passing Interface)
– Standardized distributed memory parallelism with message passing

process-based

– The user has to specify the work distribution & data distribution
& all communication

– Synchronization implicit by completion of communication
– The application processes are calling MPI library-routines
– Compiler generates normal sequential code

– Typically domain decomposition is used
– Communication across domain boundaries

– Standardized
MPI-1: Version 1.0 (1994), Version 1.1 (1995), Version 1.2 (1997)
MPI-2: Version 2.0 (1997), Version 2.1 (2008), Version 2.2 (2009)
MPI-3: Version 3.0 (2012), Version 3.1 (2015)

Summary — MPI IV

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
66

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Automatic Parallelization
– The compiler

• Has no global view
• Cannot detect independencies, e.g., of loop iterations
 Oarallelizes only parts of the code

– Only for shared memory and ccNUMA systems, see OpenMP

• OpenMP
– Only for shared memory and ccNUMA systems
– Mainly for loop parallelization with directives
– Only for medium number of processors
– Explicit domain decomposition also via rank of the threads

Limitations I

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
67

Introduction to Computational Fluid
Dynamics in High Performance Computing

• HPF
– Set-compute-rule may cause a lot of communication
– HPF-1 (and 2) not suitable for irregular and dynamic data
– JaHPF may solve these problems, but with additional programming

costs
– Can be used on any platform

• MPI
– The amount of your hours available for MPI programming
– Can be used on any platform, but communication overhead on shared

memory systems

Limitations II

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
68

Introduction to Computational Fluid
Dynamics in High Performance Computing

Advantages and Challenges

 OpenMP HPF MPI

Maturity of programming model ++ + ++

Maturity of standardization + + ++
Migration of serial programs ++ 0 – –

Ease of programming (new progr.) ++ + –
Correctness of parallelization – ++ – –

Portability to any hardware architecture – ++ ++
Availability of implementations of the stand. + + ++
Availability of parallel libraries 0 0 0

Scalability to hundreds/thousands of
processors

– – 0 ++

Efficiency – 0 ++
Flexibility – dynamic program structures – – ++
 – irregular grids, triangles, tetra-

hedrons, load balancing, redistribut.
– – ++

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
69

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Parallelization of explicit or implicit solver
• Parallel hardware
• Parallel programming models
• Parallelization scheme

Outline

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
70

Introduction to Computational Fluid
Dynamics in High Performance Computing

Parallelizing an Application

Type of Parallelization

Parallelization with
MPI

Distributed
memory

Shared
memory

Parallelization with
OpenMP

See OpenMP CourseNext slides

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
71

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Designing the domain decomposition
– How to achieve optimal load balancing
– And minimal data transfer between the sub-domains

• Estimating [for a given platform]

– Idle time due to non-optimal load balancing
– Communication time
– Calculating the estimated speedup

• Implementation
– Domain decomposition with load balancing
– Halo storage
– Communication: Calculated data  halo cells of the neighbors

[e.g., with MPI_Sendrecv (Cartesian grids)
or non-blocking point-to-point communication (unstructured grids)]

– Checking for global operations, e.g., dot-product, norm, abort criterion
[to be implemented, e.g., with MPI_Allreduce]

Parallelizing an Application with MPI

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
72

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Scalability
– Memory:

All large data should be distributed
[and not duplicated on each MPI process]

– Compute time:
How many processes can be used to have
95%, 90%, 80%, or 50% parallel efficiency?

• Efficient numerical schemes:
– Multigrid only inside of a MPI process

[and not over the total simulation domain]

– Full data exchange between all processes
[e.g., a redistribution of the data, (with MPI_Alltoall)]

Problems

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
73

Introduction to Computational Fluid
Dynamics in High Performance Computing

• Parallelization of explicit or implicit solver
– Domain decomposition
– Halo data communication
– Global operations

• Parallel hardware
– Shared memory [SMP] / distributed memory / hybrid [cluster of SMPs]

• Parallel programming models
– Distributing work and data
– Additional overhead due to:

• Communication / Synchronization / Non-optimal load balancing

– OpenMP / HPF / MPI
• Parallelization scheme

– Design / Estimation of Speedup / Implementation
– Scalability problems

Summary

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
74

Introduction to Computational Fluid
Dynamics in High Performance Computing

Data Parallelism – HPF, I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of
A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
75

Introduction to Computational Fluid
Dynamics in High Performance Computing

• HPF (High Performance Fortran)
– standardized data distribution model

– the user has to specify the data distribution explicitly
– Fortran with language extensions and directives
– compiler generates message passing or shared memory parallel code
– work distribution & communication is implicit
– set-compute-rule:

the owner of the left-hand-side object computes the right-hand-side

– typically arrays and vectors are distributed

– draft HPF-1 in 1993, standardized since 1996 (HPF-2)
– JaHPF since 1999

Data Parallelism – HPF, II.

Fall 2023
HPCDF08 - Parallelization and Iterative

Solver
76

