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Introduction to Computational Fluid 
Dynamics in High Performance Computing

• Parallelization of explicit or implicit solver [slides   
1-42]

– PDE [4]  Discretization [4]  Explicit time-step integration [5]
– Algebraic viewpoint [6]  Implicit time-step [8]  no principle differences [10]
– Parallelization [11]  Domain Decomposition [12]  Load Balancing [13-17]
– Halo [18-20]  Speedup & Amdahl’s Law [20-26]
– Parallelization of Implicit Solver [27-31]  Optimization Hints [32-35]
– Vectorization & Cache Optimization [35-38]
– Solver-Classes & Red/Black (checkerboarder) [39-41]
– Literature [42]

• Parallel hardware [slides 43-49]

• Parallel programming models [slides 50-69]

• Parallelization scheme [slides 70-74]

Outline

Fall 2023
HPCDF08 - Parallelization and Iterative 

Solver
2



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Motivation

• Most systems have some kind of parallelism
– Pipelining -> vector computing
– Functional Parallelism -> modern processor technology
– Combined instructions -> e.g. multiply-add as one instruction
– Hyperthreading
– Several CPUs on Shared Memory (SMP) with Multithreading
– Distributed memory with 

• Message Passing or
• Remote Memory Access

• Most systems are hybrid architectures with parallelism on several levels
• High Performance Computing (HPC) platforms are typically

– Clusters (distributed memory) of
– SMP nodes with several CPUs
– Each CPU with several 
– Floating point units, pipelining …

Node Interconnect

SMP nodes

CPUs
shared
memory

Fall 2023
HPCDF08 - Parallelization and Iterative 

Solver
3



Introduction to Computational Fluid 
Dynamics in High Performance Computing

• T/t = f(T,t,x,y,z)
• Example:   Heat conduction   T/t = T

• Discretization: lower index i,j  continuous range x,y (2-dim. example)
upper index t   continuous range t

• T/t = (Tij – Tij )/dt,    2T/x2 = (Ti+1,j – 2Ti,j  + Ti–1,j)/dx2 ,     …

• (Tij – Tij )/dt = ((Ti+1,j – 2Ti,j  + Ti–1,j)/dx2 + (Ti,j+1 – 2Ti,j  + Ti,j–1)/dy2)

Partial Differential Equation (PDE) and Discretization

t+1 t ? ? ? ?  ?           ?

t+1 t
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Introduction to Computational Fluid 
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• If the right side depends only on old values Tt, i.e.,  ? = t 

• Tij = Tij + ((Ti+1,j – 2Ti,j  + Ti–1,j)/dx2 + (Ti,j+1 – 2Ti,j  + Ti,j–1)/ dy2)dt

• You can implement this, e.g., as two nested loops:
do i=0,m-1

do j=0,n-1
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) + 

c5T(i,j-1)
end do

end do

• Vectorizable loop, without indirect addressing!

Explicit time-step integration

t+1 t t t t t t t
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Introduction to Computational Fluid 
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• Explicit scheme: 

• Tij = (1+c1)Tij + c2Ti+1,j  + c3Ti–1,j + c4Ti,j+1 + c5Ti,j–1

• Can be viewed as a sparse-matrix-multiply

– Choose a global numbering
i,j =   0,0;   0,1; … 0,n-1;   1,0;   1,1; … 1,n-1;   …    m-1,0; … m-1,n-1 

 I =         0;      1; …    n-1;      n;  n+1; …   2n-1;   …  (m-1)n; …     mn-1

– (Tij)i=0..m-1, j=0..n-1 is view as a vector (TI)I=0..mn-1

– T     = (I+A)T

• Is never programmed as a general sparse-matrix-multiply!

• This algebraic view-point is important to understand the parallelization of 
iterative solvers on the next slides

Algebraic view-point

t+1 t t t t t

t+1 t
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Dynamics in High Performance Computing
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Matrix notation   T = AT

A = (AIJ)I=0, mn–1 =
J=0, mn–1

c1 c4 c2 
c5 c1 c4 c2 

c5 c1 c4 … c2
…  … c4 c2
…   c5 c1 c2

c3 c1 c4 c2 
c3 c5 c1 c4 c2 

c3 c5 c1 c4 … c2
c3 …  … c4 c2

c3 …   c5 c1 
c2

…                      …  …                 …
…                 …  …                      …

5 point stencil for computing, e.g.,

TI=6 =  Ti=1, j=2

Algebraic and  physical indices 

t+1 t+1

Representing 
physical relation to vertical

and to horizontal neighbors

t+1 t



Introduction to Computational Fluid 
Dynamics in High Performance Computing

• The right side depends also on new values Tt+1, 
i.e.,  ? = t+1  or a combination of old and new values

• Tij = Tij + ((Ti+1,j – 2Ti,j  + Ti–1,j)/dx2 + (Ti,j+1 – 2Ti,j  + Ti,j–1)/ dy2)dt

• You have to implement a global solver in each time-step

• (1–c1)Tij – c2Ti+1,j     – c3Ti–1,j    – c4Ti,j+1  – c5Ti,j–1 =  Tij

• Using global numbering I=0..(nm-1) and matrix notation (I–A)T      = T
• c1, c2, … normally depend also on i,j (and possibly also on t)

• (I–A)T     = T  can be solved with iterative solvers, e.g., CG,
with major internal compute step pnew= Apold (sparse-matrix-vector-multiply)

Implicit time-step:  Solving a PDE

t+1          t t+1           t+1       t+1                       t+1            t+1       t+1

t+1 t+1 t+1               t+1                 t+1            t

t+1         t

t+1 t
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Introduction to Computational Fluid 
Dynamics in High Performance Computing

• Explicit: (In each [time] step,) field variables are updated using 
neighbor information (no global linear or nonlinear solves)

• Implicit: Most or all variables are updated in a single global linear 
or nonlinear solve

• Both categories can be expressed (in the linear case) with a 
sparse-matrix-vector-multiply
– Explicit: T     = (I+A)T [ the 2- or 3-dim T is here expressed as a vector

– Implicit: (I–A)T      = T over the global index I=0..(mn-1) ]

• Vector T is a logically serialized storage of the field variables
• Matrix A is sparse

– The rows reflect same position as in T, 
i.e., corresponds to one field variable 

– Elements reflect needed neighbor information

Solver Categories (used in this talk)

t+1 t

t+1 t
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• Both categories can be expressed (in the linear case) with a sparse matrix
– Explicit: T     = (I+A)T    [the 2- or 3-dim T is here expressed as a 

vector]
– Implicit: (I–A)T      = T

• Implicit iterative solver:
– Major (time-consuming) operation is sparse-matrix-vector-multiply

• Ap with p is an interims vectors

– Same operation as in the explicit scheme
•  Focus of this talk

– Parallelization of simulation codes based on
– Sparse matrix-vector-multiply
– Domain decomposition for explicit time-step integration
– Same methods can be used for Ap in implicit solvers

No principle differences between implicit and explicitt+1 t

t+1 t



Introduction to Computational Fluid 
Dynamics in High Performance Computing

• Shared memory:
– Independent iterations are distributed among threads,
– Threads = parallel execution streams (on several CPUs)

on the same shared memory
– Mainly used to parallelize DO / FOR loops
– E.g., with OpenMP

• Distributed memory:
– Parallel processes, each with own set of variables
– Message Passing between the processes, e.g., with MPI 
– Matrix (physically stored, or only logically) 

and all vectors are distributed among the processes
– Optimal data distribution based on domain decomposition

Parallelization
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Introduction to Computational Fluid 
Dynamics in High Performance Computing

• The simulation area (grid, domain) must be divided into several 
sub-domains

• Each sub-domain is stored in and calculated by a separate process 

Domain Decomposition
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• Distribution of data and work implies
– Idle time, if the work load distribution is not balanced
– Additional overhead due to communication needs on 

sub-domain boundaries
– Additional memory needs for halo (shadow, ghost) cells

to store data from neighbors

• Major optimization goals:
– Each sub-domain 

has the same work load
 optimal load balance

– The maximal boundary 
of all sub-domains is minimized
 minimized communication

Load Balancing and Communication Optimization

du/dx = (–ui +ui+1)/Δx

Communication        Halo cells



Introduction to Computational Fluid 
Dynamics in High Performance Computing

If each grid point requires same work:
• 2 dimensions:   

Each sub-domain (computed by one CPU) should 
– Have the same size  optimal load balance
– And should be quadratic  minimal communication

• Solution with factorization of the number of available processors
– With MPI_Dims_create()

• Caution: MPI_Dims_create tries to factorize the number of processes as 
quadratic as possible, e.g., 12 = 4 x 3,

• But one must make the number of grid points quadratic!
• Example – Task: Grid with 1800 x 580 grid points on 12 processors

Solution: 6 x 2 processes

Cartesian Grids

580
290

300

1800
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Introduction to Computational Fluid 
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• Solution for any number of available processors
– Two areas with different shape of their sub-domains

• Horizontal split

• Vertical split 

Cartesian Grids (2-dim, continued)

Sub-domains at the split 
boundary have a more 
complicated 
neighborhood  

Examples with 
41 sub-domains
and 1800 x 580 grid
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Introduction to Computational Fluid 
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• 3 dimensions
– Same rules as for 2 dimensions
– Usually optimum with 3-dim. domain decomposition & cubic sub-domains

Cartesian Grids (3-dim)

Splitting in
• one dimension:

communication
= n2*2*w *1

• two dimensions:
communication

= n2*2*w *2 / p1/2

• three dimensions:
communication

= n2*2*w *3 / p2/3

w = width of halo
n3 = size of matrix
p = number of processors
cyclic boundary
—> two neighbors 

in each direction

optimal for p>11
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Introduction to Computational Fluid 
Dynamics in High Performance Computing

• Mesh partitioning with special load balancing libraries
– Metis (George Karypis, University of Minnesota)
– ParMetis (internally parallel version of Metis)

• http://www.cs.umn.edu/~karypis/metis/metis.html
– Scotch & PT-Scotch  (Francois Pellegrini, LaBRI, France) 

• http://www.labri.fr/perso/pelegrin/scotch/
– Jostle (Chris Walshaw, University of Greenwich, GB) 

• http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
– Goals:

• Same work load in 
each sub-domain

• Minimizing the
maximal number of 
neighbor-connections
between sub-domains

Unstructured Grids
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Introduction to Computational Fluid 
Dynamics in High Performance Computing

• Stencil:
– To calculate a new grid point (   ), 

old data from the stencil grid points ( ) are needed
• E.g., 9 point stencil

• Halo
– To calculate the new grid points of a sub-domain,

additional grid points from other sub-domains are needed.
– They are stored in  halos  (ghost cells, shadows)
– Halo depends on form of stencil

Halo
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Introduction to Computational Fluid 
Dynamics in High Performance Computing

One iteration in the
• Serial code:

– Xnew = function(xold)
– Xold = xnew

• Parallel code:
– Update halo 

[=Communication, e.g., with 
4 x MPI_Sendrecv ]

– Xnew = function(xold)
– Xold = xnew

Communication: Send inner data        into halo storage

Examples with 12 sub-domains and 
horizontally cyclic boundary conditions
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Introduction to Computational Fluid 
Dynamics in High Performance Computing

• MPI non-blocking send must not send 
inner corner data into more than one direction
– Use MPI_Sendrecv
– Or non-blocking MPI_Irecv

• Stencil with diagonal point, e.g., 

– i.e., halos include corners   substitute small corner messages:
•  one may use 2-phase-protocol:
•  normal horizontal halo communication
•  include corner into vertical exchange

Corner problems

Fall 2023
HPCDF08 - Parallelization and Iterative 

Solver
20



Introduction to Computational Fluid 
Dynamics in High Performance Computing

Tparallel, p = f Tserial + (1-f) Tserial / p + Tcommunication + TidleCPU / p

Tserial, wall-clock time needed with one processor
f percentage Tserial of that can not be parallelized
Tparallel, p wall-clock time needed with p processor
Tcommunication average wall-clock time needed communication 

on each CPU
TidleCPU idle CPU-time due to bad load balancing
Sp speedup on p processors := Tserial / Tparallel, p
Ep efficiency on p processors := Sp / p

Tparallel, p = f Tserial + (1-f) Tserial / p + Tcommunication + TidleCPU / p

Ep = (1  +  f(p-1) +  Tcommunication / (Tserial/p)  +  TidleCPU / Tserial ) –1

 1  – f(p-1) – Tcommunication / (Tserial/p) – TidleCPU / Tserial

should be  << 1               << 1        << 1 

Speedup
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Tparallel, p = f· Tserial +  (1-f)· Tserial / p
f ... sequential part of code that can not be done in parallel

Sp = Tserial / Tparallel, p = 1 / (f + (1-f) / p)

For p —> infinity,  speedup is limited by Sp < 1 / f

Amdahl’s Law    (if neglecting Tcommunication and TidleCPU)
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Tparallel, p = f· Tserial +  (1-f)· Tserial / p 
f ... sequential part of code that can not be done in parallel

Sp = Tserial / Tparallel, p = 1 / (f + (1-f) / p)

For p —> infinity,  speedup is limited by Sp < 1 / f

Amdahl’s Law  (double-logarithmic)
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• Only ratio – no absolute performance value!

• Sometimes super-scalar speedup: Sp > p
– Reason: 

For speedup measurement, the total problem size is constant
 The local problem size in each sub-domain may fit into cache

• Scale-up:
– Sc(p,N) = N / n    with  T(1,n) = T(p,N)
– With T(p,N) = Time to solve problem of size N on p processors
– Compute larger problem with more processors in same time

• Weak scaling:
– T(p, p•n) / T(1,n) is reported,
– I.e., problem size per process (N = p•n) is fixed
– Constant ratio = 100% efficiency

Speedup problems
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• 2-dim:
– 9-point-stencil                      or
– 300x300 grid points on each sub-domain
– 16 byte communication data per grid point
– 100 FLOP per grid point
– 20 MB/s communication bandwidth per process

(this bandwidth must be available on all processes at the same time)
– 1 GFLOP/s peak processor speed
– 10% = real application / peak processor speed
– Tcommunication = (9-1) · 300 · 16 byte / 20 MB/s = 1.92 ms
– Tserial / p = 300 · 300 · 100 FLOP / (1 GFLOP/s · 10%) = 90 ms
 Tcommunication / (Tserial/p) = 1.92 ms / 90 ms = 0.021 << 1
 Only 2.1 % reduction of the parallel efficiency due to communication

Example (2-dim)
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• 3-dim:
– 13-point-stencil
– 50x50x50 grid points on each sub-domain
– 16 byte communication data per grid point
– 100 FLOP per grid point
– 20 MB/s communication bandwidth per process 

(this bandwidth must be available on all processes at the same 
time)

– 1 GFLOP/s peak processor speed
– 10% = real / peak processor speed
– Tcommunication = (13-1) · 50 · 50 · 16 byte / 20 MB/s = 24 ms
– Tserial / p = 50 · 50 · 50 · 100 FLOP / (1 GFLOP/s · 10%) = 125 ms
Tcommunication / (Tserial/p) = 24 ms / 125 ms = 0.192 < 1
19 % reduction of the parallel efficiency due to communication

Example (3-dim)
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• The solution path:
Real world
 Partial differential equation
 Discretization (2/3-dimensions = indices i,j,k)
Global index  (i,j,k)  I
 Algebraic equation Ax=b    

with sparse-matrix A = (a I,J) I=1..N,J=1..N
boundary vector b = (b I) I=1..N
solution vector x = (x I) I=1..N

• Solve Ax=b with iterative solver:
Major computational steps:
– Sparse-matrix-vector-multiply:  Av, with v=interims vector
– Scalar product:  (v1,v2)

Implicit Iterative Solver
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Initialize matrix A; Initialize boundary condition vector b;
Initialize i_max ( size of A); Initialize ε (>0); Initialize solution vector x;
/* p = b – Ax ;     */ p = x; /* Reason: */
/* substituted by */ v = Ap; /* Parallelization halo needed */ 

p = b – v; /* For same vector (p) as in loop */ 
r = p;
 = (|| r ||2)2 ;
for ( i=0; (i < i_max)  &&  ( > ε); i++)
{ v = Ap;

 =  / (v,p)2 ;
x = x + p;
r = r – v;
new = ( || r ||2 )2 ;
p = r + (new/)p;
 = new;

}
Print x, , ||b–Ax||2;

Example:  CG Solver

See, e.g.,
Andreas Meister: Numerik linearer Gleichungssysteme.
Vieweg, 2nd ed., 2005, p. 124.
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To implement domain decomposition:
• Go back to 2- or 3-dim domain with the 2 or 3 index variables (i,j) 

or (i,j,k)
– A = (ai,j,k; i’,j’,k’) i=1..l, j=1..m, k=1..n ;  i’=1..l, j’=1..m, k’=1..n

– p = (pi,j,k) i=1..l, j=1..m, k=1..n 

– Matrix-vector-multiply: 
do (i=1, i<l, i++)

do (j=1, j<m, j++)
do (k=1, k<n, k++)

vi,j,k = 0
sparse (unrolled) loops over i’, j’, k’

vi,j,k = vi,j,k + ai,j,k; i’,j’,k’ * pi’,j’,k’

• Domain decomposition in the 2/3-dim space
(and not in the 1-dim algebraic space I=1..N)

Parallel Iterative Solver
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• Matrix A
• Boundary condition vector b
• Solution vector x
• Residual vector r
• Gradient vector p

• Halos are needed in this algorithm
only for p  
(only p is multiplied with A)

Distributed Data Initialize matrix A;
Initialize boundary condition vector b;
Initialize i_max ( size of A);  Initialize ε (>0);
Initialize solution vector x; 
p = x; 
v = Ap; 
p = b – v;
r = p;
 = (|| r ||2)2 ;
for ( i=0; (i < i_max)  &&  ( > ε); i++)
{ v = Ap;

 =  / (v,p)2 ;
x = x + p;
r = r – v;
new = (|| r ||2)2 ;
p = r + (new/)p;
 = new;

}
Print x, , ||b–Ax||2;
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Operation that include communication
• Halo exchange for vector p

to prepare matrix-vector-multiply Ap
• Scalar product (v1,v2)

– Algorithm:
• Compute local scalar product
• Compute global scalar product

with MPI_Allreduce(…, MPI_SUM,…)
over all local scalar product values

• Norm || r ||2
– Algorithm:  same as scalar product

Operations without communication
• Matrix-vector-multiply:  v = Ap

– requires updated halo
• AXPY:  x or y = x + y

Initialize matrix A;
Initialize boundary condition vector b;
Initialize i_max ( size of A);  Initialize ε (>0);
Initialize solution vector x; 
p = x; 
v = Ap; 
p = b – v;
r = p;
 = (|| r ||2)2 ;
for ( i=0; (i < i_max)  &&  ( > ε); i++)
{ v = Ap;

 =  / (v,p)2 ;
x = x + p;
r = r – v;
new = (|| r ||2)2 ;
p = r + (new/)p;
 = new;

}
Print x, , ||b–Ax||2;

Parallel Operations
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• Preserve regular pattern of the matrix!

• Don’t use indexed array access (p(indexarr(i)),
if it is not really necessary

• Always use many arrays  
REAL :: t(1000000), p(1000000), v(1000000) 

• (instead of one array of a structure)
TYPE data_struct_of_one_point

REAL :: t
REAL :: p
REAL :: v 

END TYPE data_struct_of_one_point
TYPE (data_struct_of_one_point) :: points(1000000)

Parallel Solver – Optimization Hints 
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• Non-cubic may cause better computational efficiency
– 50x50x50 cubic  boundary = 6 x   50 x 50 = 15,000
– vs. 100x25x50  boundary = 2 x 100 x 25

+ 2 x 100 x 50
+ 2 x   25 x 50 = 17,500

– 16 % larger boundary, and
– (expecting totally ~10% communication) 
 1.6% additional communication overhead

– 100% longer most inner loop, 
which may cause more than 1.6 % computational speedup!!!

General Optimization Hints 
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• Overlapping of communication and computation
– On MPP (massively parallel processors) systems 

and clusters of single-CPU-nodes: 
Overlapping normally not needed

– Advantages on clusters of SMP (shared memory) nodes
(hybrid hardware with hybrid programming model):
1 CPU communicates while other CPUs compute

– One must separate
• Computation that needs halo data
 cannot be overlapped with communication

• Computation of grid points that do not need halo data
 can be overlapped with communication

• Preserve pipelining / vectorization with your parallelization

General Optimization Hints (continued)
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• c = a + b

Pipelining and Instruction Chaining / 
Vectorization

i=1 
2 

3 
4 

5 
6 

7 
8 

9 
10 

11 

Startup-time
of the pipeline

1 cycle

a result value is stored
in each cycle

time

Each unit of the 
pipeline is active
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• How can I implement the loops efficiently
do i=0,m-1

do j=0,n-1
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) + c5T(i,j-1)

end do
end do

• On vector-systems:
– T and Tnew are defined on (-1:m, -1:n), 
– But the loop is done only on (0:m-1,  0:n-1)
– The most-inner loop may be too small for good vectorization

[e.g., on NEC SX-6, vector length should be a multiple of 256]

– Interpret arrays as 1-dimensional T, Tnew(0 : (m+2)(n+2)-1 )
– One loop over all elements
– Ignore senseless values in Tnew on boundary

How to implement sparse-matrix-vector-multiply I
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• How can I implement the loops efficiently
do i=0,m-1

do j=0,n-1
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) + c5T(i,j-1)

end do
end do

• On cache-based systems:
– Move small squares (2-dim) or cubes (3-dim) over the total area: 

do iout=0,m-1,istride

do jout=0,n-1,jstride
do i=iout, min(m-1, iout+istride-1)

do j=jout, min(n-1, jout+jstride-1)
Tnew(i,j) = (1+c1)T(i,j) + c2T(i+1,j) + c3T(i-1,j) + c4T(i,j+1) + c5T(i,j-1)

end do
end do

end do
end do

How to implement sparse-matrix-vector-multiply II

5 loaded stencil values are reused 
via cache in the next i or j iterations
e.g., istride=jstride=10
 100 inner iterations need 500 T-values
 140 from memory used for

+ 360 from cache 900 FLOP
Fall 2023

HPCDF08 - Parallelization and Iterative 
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Important principle    Single source!!!

• #ifdef _OPENMP
special OpenMP parallelization features

#endif

• #ifdef USE_MPI
MPI_Init(…);
MPI_Comm_size(…, &size);  MPI_Comm_rank(…, &my_rank); 

#else
size=1; my_rank=0;

#endif
…

• #ifdef USE_CACHE
cache-version of sparse-matrix-vector-multiply

#else
vector-version

#endif

How to implement sparse-matrix-vector-multiply III
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• Parallel step algorithms:
– xiter := func(xiter–1)
– e.g. Jacobi, CG, Richardson, ...
– No problems with vectorization and parallelization

• Single step algorithms:
– xiter := func(xiter–1,  some elements of xiter)
– E.g. Gauß-Seidel, SOR, … 
– Vectorization and parallelization is possible with red/black 

(checkerboard) method 

Classes of iterative solvers
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Single step algorithms
• Example:  SOR

– xm+1,i := (1–)xm,i +  (bi –  aij xm+1,j –  aij xm,j )       (m = #iteration)

– If only direct neighbor exists, 
i.e.  aij  0  for j = “i+x”, “i–x”, “i+y”, “i–y” 

– and “i–x” and “i–y” are indexes less than i, then

 xm+1,i

:= (1–)xm,i +  (bi –ai,i–xxm+1,i–x–ai,i–yxm+1,i–y–ai,i+xxm,i+x–ai,i+yxm,i+y)

Parallelization of single-step algorithms 

aii

i–1 

j=1

n 

j=i

aii

Left and lower x value must be already computed!
Problem for parallelization and vectorization!
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• First, compute all red checkers, then communicate boundary
• Second, compute all black checkers and communicate boundary
• Inside of each checker: Use original sequence
• Parallel version is not numerically identical to serial version!!!

Red/black (checkerboard) ordering
• 6 nodes

• Each node has 
– 2 red and 
– 2 black checkers
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• G. Fox, M. Johnson, G. Lyzenga, S. Otto, S. Salmon, D. Walker:
Solving Problems on Concurrent Processors.
Prentice-Hall, 1988.

• Barry F. Smith, Petter E. Bjørstad, William D. Gropp:
Domain Decomposition
Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, 1996.

• Andreas Meister:
Numerik linearer Gleichungssysteme.
Vieweg, 1999.
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• Parallelization of explicit or implicit solver
• Parallel hardware
• Parallel programming models
• Parallelization scheme

Outline
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• Shared Memory
– SMP = Symmetric multiprocessing

• Distributed Memory
– DMP = Distributed memory parallel

• Hierarchical memory systems
– Combining both concepts

Major Parallel Hardware Architectures
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Multiprocessor - shared memory

Memory-Interconnect

core core core core

memory
bank

memory
bank

memory
bank

memory
bank

• All CPUs are connected to all memory banks with same speed 
• Uniform Memory Access (UMA)
• Symmetric Multi-Processing (SMP)
• Network types, e.g.

• Crossbar  independent access from each CPU 
• BUS  one CPU can block the memory access of the other CPUs

Thanks to Alfred Geiger and Michael Resch (HLRS):
Some pictures and slides are from their Parallel Programming lectures.
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Multicomputer - distributed memory

Node-Interconnect

CPU CPU CPU CPU

Memory Memory Memory Memory

Node or PE (processing element)

• Nodes are coupled by a node-interconnect
• Each CPU: – Fast access to its own memory 

– but slower access to other CPU’s memories
• Non-Uniform memory Access (NUMA)
• Different network types, e.g. BUS, torus, crossbar
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Hybrid architectures

Node Interconnect

• Most modern high-performance computing (HPC) systems are 
clusters of SMP nodes

• SMP (symmetric multi-processing) inside of each node
• DMP (distributed memory parallelization) on the node 

interconnect

SMP 
node
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Interconnect topologies

3-D torus  (8x8x3 nodes)

Fat tree

switch switch switch switch

switch

switch
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• Parallelization of explicit or implicit solver
• Parallel hardware
• Parallel programming models

– Parallelization Strategies [51-55]  Models [56]  OpenMP [56-58]  OpenMP-tasks [59-61]  MPI 
[62-66]

– Limitations [67-68]  Advantages & Challenges [69]

• Parallelization scheme

Outline
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• Two major resources of computation:
– Processor
– Memory

• Parallelization means
– Distributing work to processors
– Distributing data (if memory is distributed)

and
– Synchronization of the distributed work
– Communication of remote data to local processor (if memory is distr.)

• Programming models offer a combined method for
– Distribution of work & data, synchronization and communication

Parallelization strategies   — hardware resources
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Distributing Work & Data
do i=1,100
 i=1,25

i=26,50
i=51,75
i=76,100

Work decomposition
• Based on loop decomposition

Domain decomposition
• Decomposition of work and

data is done in a higher model,
e.g. in the reality

A(  1:20, 1:  50)
A(  1:20, 51:100)
A(21:40, 1:  50)
A(21:40, 51:100)

Data decomposition
• All work for a local portion

of the data is done by the
local processor
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• Synchronization
– Is necessary
– May cause

• Idle time on some processors
• Overhead to execute the synchronization primitive

Synchronization

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

BARRIER synchronization

Do i=1,100
a(i) = b(i)+c(i)

Enddo
Do i=1,100

d(i) = 2*a(101-
i)

Enddo

Fall 2023
HPCDF08 - Parallelization and Iterative 

Solver
52



Introduction to Computational Fluid 
Dynamics in High Performance Computing

• Communication is necessary on the boundaries

– E.g. b(26) = a(26) + f*(a(25)+a(27)-2*a(26))

– E.g. at domain boundaries 

Communication

Do i=2,99
b(i) = a(i) + f*(a(i-1)+a(i+1)-2*a(i))

Enddo

a(1:25), b(1:25)
a(26,50), b(51,50)
a(51,75), b(51,75)
a(76,100), b(76,100)
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OpenMP
– Shared Memory Directives
– To define the work decomposition
– No data decomposition
– Synchronization is implicit (can be also user-defined)

• OpenMP – task based parallelization
– Task based parallelization
– User specifies tasks and task dependencies with directives
– Parallelization (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– By calling MPI communication library-routines

Major Programming Models

1
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Shared Memory Directives  – OpenMP I 

Real :: A(n,m), B(n,m)

do j = 2, m-1

do i = 2, n-1

B(i,j) = ... A(i,j) 
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do

end do

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO
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Shared Memory Directives  – OpenMP II

Master ThreadSingle Thread

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL
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• OpenMP
– Standardized shared memory parallelism
– Thread-based
– The user has to specify the work distribution explicitly with directives
– No data distribution, no communication
– Mainly loops can be parallelized
– Compiler translates OpenMP directives into thread-handling
– Standardized since 1997

• Automatic SMP-Parallelization
– E.g., Compas (Hitachi), Autotasking (NEC)
– Thread based shared memory parallelism
– With directives (similar programming model as with OpenMP)
– Supports automatic parallelization of loops
– Similar to automatic vectorization

Shared Memory Directives  – OpenMP III
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• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• OpenMP – task based parallelization
– Task based parallelization
– User specifies tasks and task dependencies with directives
– Parallelization (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

Major Programming Models  – Task based 
programming

1

2
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Basic Idea:
• Programmer defines tasks as basic units for parallel execution where a 

task represents a more or less self-contained part of the code.
• Runtime decides on the execution of the tasks, managing the difficult

problem of their ordering and hardware placement

Task based Parallelisation

Program
Code

#include <stdio.h>
#include <stdlib.h>

#define NB 64 /**< number

int *A[NB][NB]; /**
static int sleep_time;
static int loop;
/** initialize data block array
*/

void init_matrix( int* 
A[NB][NB] ) {

int i, j;
for( i = 0; i < NB; i++ ) {

for( j = 0; j < NB; j++

Program
Code

#include <stdio.h>
#include <stdlib.h>

#define NB 64 /**< number

int *A[NB][NB]; /**
static int sleep_time;
static int loop;
/** initialize data block array
*/

void init_matrix( int* 
A[NB][NB] ) {

int i, j;
for( i = 0; i < NB; i++ ) {

for( j = 0; j < NB; j++

Core 1 Core 1

Core 1 Core 1

RuntimeDefine
Tasks
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• Task + dependency model introduced with OpenMP 4.0
• OpenMP tasks defined with #prgams omp task

• Dependencies between tasks specified via input and
output prameters using depend(in|out) clause

• Uses the task set of a surrounding parallel region as
workers to execute the tasks

Task based Parallelisation – OpenMP
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Task based Parallelisation – OpenMP Example

#pragma omp parallel
{
#pragma omp single
{

int x, y, z;
#pragma omp task depend( out: x )

x = init(); 
#pragma omp task depend( in: x ) depend( out: y)

y = f(x);
#pragma omp task depend( in: x ) depend( out: z)

z = g(x);
#pragma omp task depend( in: y, z )

finalize(y, z);
}}
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Major Programming Models  – MPI 

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• OpenMP – task based parallelisation
– Task based parallelisation
– User specifies tasks and task dependencies with directives
– Parallelisation (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– By calling MPI communication library-routines

1

2

3
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• Each processor in a message passing program runs a sub-program
– Written in a conventional sequential language, e.g., C or Fortran,
– Typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank
– Returned by special library routine

• Communication via special send & receive routines (message passing)

Message Passing Program Paradigm  – MPI I

myrank=0

data

sub-
program

myrank=1

data

sub-
program

myrank=2

data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network
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Additional Halo Cells   – MPI II

Halo
(Shadow,
Ghost cells)

User defined communication
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Message Passing   – MPI III

Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... 
A(i+1,j)

... A(i,j-1) ... 
A(i,j+1)

end do
end do

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size;   ja=1+m1*myrank;   je=max(m1*(myrank+1), m)
jax=ja-1;  jex=je+1   // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors, 

!   storing into the halo cells

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of 
A

Data definition
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• MPI (Message Passing Interface)
– Standardized distributed memory parallelism with message passing 

process-based

– The user has to specify the work distribution & data distribution
& all communication

– Synchronization implicit by completion of communication
– The application processes are calling MPI library-routines
– Compiler generates normal sequential code

– Typically domain decomposition is used
– Communication across domain boundaries

– Standardized 
MPI-1:   Version 1.0 (1994), Version 1.1 (1995), Version 1.2 (1997)
MPI-2:   Version 2.0 (1997), Version 2.1 (2008), Version 2.2 (2009)
MPI-3:   Version 3.0 (2012), Version 3.1 (2015)

Summary   — MPI IV
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• Automatic Parallelization
– The compiler 

• Has no global view
• Cannot detect independencies, e.g., of loop iterations
 Oarallelizes only parts of the code

– Only for shared memory and ccNUMA systems, see OpenMP 

• OpenMP
– Only for shared memory and ccNUMA systems
– Mainly for loop parallelization with directives
– Only for medium number of processors
– Explicit domain decomposition also via rank of the threads 

Limitations I
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• HPF
– Set-compute-rule may cause a lot of communication
– HPF-1 (and 2) not suitable for irregular and dynamic data
– JaHPF may solve these problems, but with additional programming 

costs
– Can be used on any platform

• MPI
– The amount of your hours available for MPI programming
– Can be used on any platform, but communication overhead on shared 

memory systems

Limitations II
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Advantages and Challenges

  OpenMP HPF MPI 

Maturity of programming model ++ + ++ 

Maturity of standardization + + ++ 
Migration of serial programs ++ 0 – – 

Ease of programming (new progr.) ++ + – 
Correctness of parallelization  – ++ – – 

Portability to any hardware architecture – ++ ++ 
Availability of implementations of the stand. + + ++ 
Availability of parallel libraries 0 0 0 

Scalability to hundreds/thousands of 
processors  

– – 0 ++ 

Efficiency – 0 ++ 
Flexibility – dynamic program structures – – ++ 
  – irregular grids, triangles, tetra-

hedrons, load balancing, redistribut. 
– – ++ 
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• Parallelization of explicit or implicit solver
• Parallel hardware
• Parallel programming models
• Parallelization scheme

Outline
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Parallelizing an Application

Type of Parallelization

Parallelization with
MPI

Distributed 
memory

Shared
memory

Parallelization with
OpenMP

See OpenMP CourseNext slides
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• Designing the domain decomposition
– How to achieve optimal load balancing
– And minimal data transfer between the sub-domains

• Estimating  [for a given platform]

– Idle time due to non-optimal load balancing
– Communication time
– Calculating the estimated speedup

• Implementation 
– Domain decomposition with load balancing 
– Halo storage
– Communication: Calculated data  halo cells of the neighbors

[e.g., with MPI_Sendrecv (Cartesian grids) 
or non-blocking point-to-point communication (unstructured grids)]

– Checking for global operations, e.g., dot-product, norm, abort criterion
[to be implemented, e.g., with MPI_Allreduce]

Parallelizing an Application with MPI
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• Scalability
– Memory: 

All large data should be distributed 
[and not duplicated on each MPI process] 

– Compute time:
How many processes can be used to have 
95%, 90%, 80%, or 50% parallel efficiency?

• Efficient numerical schemes:
– Multigrid only inside of a MPI process

[and not over the total simulation domain] 

– Full data exchange between all processes
[e.g., a redistribution of the data, (with MPI_Alltoall)] 

Problems
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• Parallelization of explicit or implicit solver
– Domain decomposition
– Halo data communication
– Global operations

• Parallel hardware
– Shared memory [SMP] / distributed memory / hybrid [cluster of SMPs]

• Parallel programming models
– Distributing work and data
– Additional overhead due to:

• Communication  /  Synchronization  /  Non-optimal load balancing

– OpenMP /  HPF /  MPI
• Parallelization scheme

– Design / Estimation of Speedup / Implementation
– Scalability problems 

Summary
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Data Parallelism   – HPF,  I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j) 
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of 
A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)
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• HPF (High Performance Fortran)
– standardized data distribution model

– the user has to specify the data distribution explicitly 
– Fortran with language extensions and directives
– compiler generates message passing or shared memory parallel code
– work distribution & communication is implicit
– set-compute-rule:

the owner of the left-hand-side object computes the right-hand-side

– typically arrays and vectors are distributed

– draft HPF-1 in 1993, standardized since 1996 (HPF-2)
– JaHPF since 1999

Data Parallelism   – HPF,  II.
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