

Parallelization of Explicit and Implicit Solvers

Rolf Rabenseifner, Christoph Niethammer

University of Stuttgart High-Performance Computing-Center Stuttgart

Outline

- Parallelization of explicit or implicit solver [slides 1-42]
 - PDE [4] \rightarrow Discretization [4] \rightarrow Explicit time-step integration [5]
 - Algebraic viewpoint [6] \rightarrow Implicit time-step [8] \rightarrow no principle differences [10]
 - Parallelization [11] → Domain Decomposition [12] → Load Balancing [13-17]
 - Halo [18-20] → Speedup & Amdahl's Law [20-26]
 - Parallelization of Implicit Solver [27-31] \rightarrow Optimization Hints [32-35]
 - Vectorization & Cache Optimization [35-38]
 - Solver-Classes & Red/Black (checkerboarder) [39-41]
 - Literature [42]
- Parallel hardware
- Parallel programming models
- Parallelization scheme

[slides 43-49]

[slides 50-69]

[slides 70-74]

Motivation

- Most systems have some kind of parallelism
 - Pipelining -> vector computing
 - Functional Parallelism -> modern processor technology
 - Combined instructions -> e.g. multiply-add as one instruction
 - Hyperthreading
 - Several CPUs on Shared Memory (SMP) with Multithreading
 - Distributed memory with
 - Message Passing or
 - Remote Memory Access
- Most systems are hybrid architectures with parallelism on several levels
- High Performance Computing (HPC) platforms are typically
 - Clusters (distributed memory) of
 - SMP nodes with several CPUs
 - Each CPU with several
 - Floating point units, pipelining ...

SMP nodes

Partial Differential Equation (PDE) and Discretization

- $\partial T/\partial t = f(T,t,x,y,z)$
- Example: Heat conduction $\partial T/\partial t = \alpha \Delta T$
- Discretization: lower index i, j \leftrightarrow continuous range x, y (2-dim. example) upper index t \leftrightarrow continuous range t
- $\partial T/\partial t = (T_{ij}^{t+1} T_{ij}^{t})/dt, \quad \partial^2 T/\partial x^2 = (T_{i+1,j} 2T_{i,j} + T_{i-1,j})/dx^2, \quad ...$
- $(T_{ij}^{t+1} T_{ij}^{t})/dt = \alpha((T_{i+1,j}^{?} 2T_{i,j}^{?} + T_{i-1,j}^{?})/dx^{2} + (T_{i,j+1}^{?} 2T_{i,j}^{?} + T_{i,j-1}^{?})/dy^{2})$

Explicit time-step integration

- If the right side depends only on old values T^t, i.e., ? = t
- $T_{ij}^{t+1} = T_{ij}^{t} + \alpha((T_{i+1,j}^{t} 2T_{i,j}^{t} + T_{i-1,j}^{t})/dx^{2} + (T_{i,j+1}^{t} 2T_{i,j}^{t} + T_{i,j-1}^{t})/dy^{2})dt$

```
• You can implement this, e.g., as two nested loops:
do i=0,m-1
do j=0,n-1
Tnew(i,j) = (1+c_1)T(i,j) + c_2T(i+1,j) + c_3T(i-1,j) + c_4T(i,j+1) + c_5T(i,j-1)
end do
end do
```

• Vectorizable loop, without indirect addressing!

Algebraic view-point

- Explicit scheme:
- $T_{ij}^{t+1} = (1+c_1)T_{ij}^{t} + c_2T_{i+1,j}^{t} + c_3T_{i-1,j}^{t} + c_4T_{i,j+1}^{t} + c_5T_{i,j-1}^{t}$
- Can be **viewed** as a sparse-matrix-multiply

- Choose a global numbering
i,j = 0,0; 0,1; ... 0,n-1; 1,0; 1,1; ... 1,n-1; ... m-1,0; ... m-1,n-1
→ I = 0; 1; ... n-1; n; n+1; ... 2n-1; ... (m-1)n; ... mn-1
-
$$(T_{ij})_{i=0..m-1, j=0..n-1}$$
 is view as a vector $(T_i)_{i=0..mn-1}$
- $T^{t+1} = (I+A)T^t$

- Is never programmed as a general sparse-matrix-multiply!
- This algebraic view-point is important to understand the parallelization of iterative solvers on the next slides

Universität Stuttgart

Implicit time-step: Solving a PDE

- The right side depends also on <u>new</u> values T^{t+1},
 i.e., ? = t+1 or a combination of old and new values
- $T_{ij}^{t+1} = T_{ij}^{t} + \alpha((T_{i+1,j}^{t+1} 2T_{i,j}^{t+1} + T_{i-1,j}^{t+1})/dx^{2} + (T_{i,j+1}^{t+1} 2T_{i,j}^{t+1} + T_{i,j-1}^{t+1})/dy^{2})dt$
- You have to implement a global solver in each time-step
- $(1-c_1)T_{ij}^{t+1} c_2T_{i+1,j}^{t+1} c_3T_{i-1,j}^{t+1} c_4T_{i,j+1}^{t+1} c_5T_{i,j-1}^{t+1} = T_{ij}^{t}$
- Using global numbering I=0..(nm-1) and matrix notation (I-A)T $^{t+1} = T^{t}$
- c₁, c₂, ... normally depend also on i, j (and possibly also on t)
- (I-A)T^{t+1} = T^t can be solved with iterative solvers, e.g., CG, with major internal compute step p_{new} = Ap_{old} (sparse-matrix-vector-multiply)

Solver Categories (used in this talk)

- **Explicit:** (In each [time] step,) field variables are updated using neighbor information (no global linear or nonlinear solves)
- Implicit: Most or all variables are updated in a single global linear or nonlinear solve
- Both categories can be expressed (in the linear case) with a sparse-matrix-vector-multiply
 - Explicit: $T^{t+1} = (I+A)T^{t}$ [the 2- or 3-dim T is here expressed as a vector
 - Implicit: $(I-A)T^{t+1} = T^{t}$ over the global index I=0..(mn-1)]
- Vector T is a *logically* serialized storage of the field variables
- Matrix A is sparse
 - The rows reflect same position as in T,
 - i.e., corresponds to one field variable
 - Elements reflect needed neighbor information

No principle differences between implicit and explicit

- Both categories can be expressed (in the linear case) with a sparse matrix
 - Explicit: T = (I+A)T [the 2- or 3-dim T is here expressed as a vector]
 - Implicit: (I-A)T = ¹
- Implicit iterative solver:
 - Major (time-consuming) operation is sparse-matrix-vector-multiply
 - Ap with p is an interims vectors
 - Same operation as in the explicit scheme
- \rightarrow Focus of this talk
 - Parallelization of simulation codes based on
 - Sparse matrix-vector-multiply
 - Domain decomposition for explicit time-step integration
 - Same methods can be used for Ap in implicit solvers

Parallelization

- Shared memory:
 - Independent iterations are distributed among threads,
 - Threads = parallel execution streams (on several CPUs) on the same shared memory
 - Mainly used to parallelize DO / FOR loops
 - E.g., with OpenMP
- Distributed memory:
 - Parallel processes, each with own set of variables
 - Message Passing between the processes, e.g., with MPI
 - Matrix (physically stored, or only logically) and all vectors are distributed among the processes
 - Optimal data distribution based on domain decomposition

Domain Decomposition

- The simulation area (grid, domain) must be divided into several sub-domains
- Each sub-domain is stored in and calculated by a separate process

Cartesian

0	1	2	6	7	8
3	4	5	9	10	11
12	13	14	18	19	20
15	16	17	21	22	23

Examples with 4 sub-domains

Load Balancing and Communication Optimization

- Distribution of data and work implies
 - Idle time, if the work load distribution is not balanced
 - Additional overhead due to communication needs on sub-domain boundaries
 - Additional memory needs for halo (shadow, ghost) cells to store data from neighbors du/dx = (-1)i + 1ii
- Major optimization goals:
 - Each sub-domain has the same work load
 - \rightarrow optimal load balance
 - The maximal boundary of all sub-domains is minimized
 - \rightarrow minimized communication

Cartesian Grids

If each grid point requires same work:

- <u>2 dimensions</u>: Each sub-domain (computed by one CPU) should
 - Have the same size \rightarrow optimal load balance
 - And should be quadratic \rightarrow minimal communication
- Solution with factorization of the number of available processors
 - With MPI_Dims_create()
 - Caution: MPI_Dims_create tries to factorize the number of processes as quadratic as possible, e.g., 12 = 4 x 3,
 - But one must make the number of grid points quadratic!
 - Example Task: Grid with 1800 x 580 grid points on 12 processors Solution: 6 x 2 processes

Cartesian Grids (2-dim, continued)

- Solution for any number of available processors
 - Two areas with different shape of their sub-domains

Cartesian Grids (3-dim)

- <u>3 dimensions</u>
 - Same rules as for 2 dimensions
 - Usually optimum with 3-dim. domain decomposition & cubic sub-domains

Unstructured Grids

- Mesh partitioning with special load balancing libraries
 - Metis (George Karypis, University of Minnesota)
 - ParMetis (internally parallel version of Metis)
 - http://www.cs.umn.edu/~karypis/metis/metis.html
 - Scotch & PT-Scotch (Francois Pellegrini, LaBRI, France)
 - http://www.labri.fr/perso/pelegrin/scotch/
 - Jostle (Chris Walshaw, University of Greenwich, GB)
 - http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
 - Goals:
 - Same work load in each sub-domain
 - Minimizing the maximal number of neighbor-connections between sub-domains

Halo

- Stencil:
 - To calculate a new grid point (),
 old data from the stencil grid points (•) are needed
 - E.g., 9 point stencil
- Halo
 - To calculate the new grid points of a sub-domain, additional grid points from other sub-domains are needed.
 - They are stored in halos (ghost cells, shadows)
 - Halo depends on form of stencil

Communication: Send inner data 🚞 into halo storage

One iteration in the

- Serial code:
 - $X_{new} = function(x_{old})$
 - $X_{old} = X_{new}$
- Parallel code:
 - Update halo
 [=Communication, e.g., with
 4 x MPI_Sendrecv

$$- X_{new} = function(x_{old})$$

$$- X_{old} = X_{new}$$

Examples with 12 sub-domains and horizontally cyclic boundary conditions

Corner problems

- MPI non-blocking send must not send inner corner data into more than one direction
 - Use MPI_Sendrecv
 - Or non-blocking MPI_Irecv
- Stencil with diagonal point, e.g.,

- i.e., halos include corners $\rightarrow \rightarrow \rightarrow$ substitute small corner messages:

- one may use 2-phase-protocol:
- normal horizontal halo communication
- include corner into vertical exchange

HPCDF08 - Parallelization and Iterative Solver

Speedup

$T_{parallel, p} = f T_{serial} + (1-f) T_{serial} / p + T_{communication} + T_{idleCPU} / p$				
T _{serial,}	wall-clock time needed with one processor			
f	percentage T _{serial} of that can not be parallelized			
T _{parallel, p}	wall-clock time needed with p processor			
$T_{communication}$	average wall-clock time needed communication on each CPU			
T _{idleCPU}	idle CPU-time due to bad load balancing			
Sp	speedup on p processors := T _{serial} / T _{parallel, p}			
Ė _p	efficiency on p processors := S _p / p			
$T_{parallel, p} = f T_{serial} + (1-f) T_{serial} / p + T_{communication} + T_{idleCPU} / p$				
$E_p = (1 + f(p-1) + T_{communication} / (T_{serial}/p) + T_{idleCPU} / T_{serial})^{-1}$				
\approx 1 - f(p-1) - T _{communication} / (T _{serial} /p) - T _{idleCPU} / T _{serial}				
should be < 1	< < 1 << 1			

Fall 2023

Amdahl's Law (if neglecting
$$T_{communication}$$
 and $T_{idleCPU}$)
 $T_{parallel, p} = f \cdot T_{serial} + (1-f) \cdot T_{serial} / p$
 $f \dots$ sequential part of code that can not be done in parallel
 $S_p = T_{serial} / T_{parallel, p} = 1 / (f + (1-f) / p)$
For p -> infinity, speedup is limited by $S_p < 1 / f$

Amdahl's Law (double-logarithmic)

— Sp = p (ideal speedup)
→ f=0.1% => Sp < 1000
→ f= 1% => Sp < 100
→ f= 5% => Sp < 20
→ f= 10% => Sp < 10

Speedup problems

- Only ratio no **absolute** performance value!
- Sometimes super-scalar speedup: S_p > p
 - Reason:
 - For speedup measurement, the total problem size is constant \rightarrow The local problem size in each sub-domain may fit into **cache**
- Scale-up:
 - Sc(p,N) = N / n with T(1,n) = T(p,N)
 - With T(p,N) = Time to solve problem of size N on p processors
 - Compute larger problem with more processors in same time
- Weak scaling:
 - T(p, $p \bullet n$) / T(1,n) is reported,
 - I.e., problem size per process (N = $p \cdot n$) is fixed
 - Constant ratio = 100% efficiency

or

Example (2-dim)

- 2-dim:
 - 9-point-stencil
 - 300x300 grid points on each sub-domain
 - 16 byte communication data per grid point
 - 100 FLOP per grid point
 - 20 MB/s communication bandwidth per process
 (this bandwidth must be available on all processes at the same time)
 - 1 GFLOP/s peak processor speed
 - 10% = real application / peak processor speed
 - $T_{communication} = (9-1) \cdot 300 \cdot 16$ byte / 20 MB/s = 1.92 ms
 - $T_{serial} / p = 300 \cdot 300 \cdot 100 FLOP / (1 GFLOP/s \cdot 10\%) = 90 ms$
 - \rightarrow T_{communication} / (T_{serial}/p) = 1.92 ms / 90 ms = 0.021 << 1
 - \rightarrow Only 2.1 % reduction of the parallel efficiency due to communication

Example (3-dim)

- 3-dim:
 - 13-point-stencil
 - 50x50x50 grid points on each sub-domain
 - 16 byte communication data per grid point
 - 100 FLOP per grid point
 - 20 MB/s communication bandwidth per process (this bandwidth must be available on all processes at the same time)
 - 1 GFLOP/s peak processor speed
 - 10% = real / peak processor speed
 - $T_{communication} = (13-1) \cdot 50 \cdot 50 \cdot 16$ byte / 20 MB/s = 24 ms
 - $-T_{serial} / p = 50 \cdot 50 \cdot 50 \cdot 100 \text{ FLOP} / (1 \text{ GFLOP/s} \cdot 10\%) = 125 \text{ ms}$
 - \rightarrow T_{communication} / (T_{serial}/p) = 24 ms / 125 ms = 0.192 < 1
 - \rightarrow 19 % reduction of the parallel efficiency due to communication

Implicit Iterative Solver

• The solution path:

Real world

- \rightarrow Partial differential equation
- → Discretization (2/3-dimensions = indices i,j,k)
- → Global index $(i,j,k) \rightarrow I$
- → Algebraic equation Ax=b with sparse-matrix A = (a _{I,J}) _{I=1..N,J=1..N} boundary vector b = (b _I) _{I=1..N} solution vector x = (x _I) _{I=1..N}
- Solve Ax=b with iterative solver:

Major computational steps:

- Sparse-matrix-vector-multiply: Av, with v=interims vector
- Scalar product: (v_1, v_2)

Example: CG Solver

Initialize matrix A; Initialize boundary condition vector b; Initialize i max (\leq size of A); Initialize ϵ (>0); Initialize solution vector x; /* p = b - Ax ; */ p = x; /* Reason: */ /* substituted by */ v = Ap; /* Parallelization halo needed */ p = b - v; /* For same vector (p) as in loop */ r = p; $\alpha = (|| r ||_2)^2;$ for (i=0; (i < i_max) && ($\alpha > \epsilon$); i++) $\{ v = Ap;$ $\lambda = \alpha / (\mathbf{v}, \mathbf{p})_2;$ $x = x + \lambda p;$ $r = r - \lambda v;$ $\alpha_{new} = (|| r ||_2)^2;$ $p = r + (\alpha_{new}/\alpha)p;$ $\alpha = \alpha_{new};$ See, e.g., } Andreas Meister: Numerik linearer Gleichungssysteme. Print x, $\sqrt{\alpha}$, $||b-Ax||_2$; Vieweg, 2nd ed., 2005, p. 124.

Parallel Iterative Solver

To implement domain decomposition:

- Go back to 2- or 3-dim domain with the 2 or 3 index variables (i,j) or (i,j,k)
 - $A = (a_{i,j,k; i',j',k'})_{i=1..l, j=1..m, k=1..n; i'=1..l, j'=1..m, k'=1..n}$
 - $p = (p_{i,j,k})_{i=1..l, j=1..m, k=1..n}$
 - Matrix-vector-multiply:

do (i=1, i
do (j=1, j
do (k=1, k

$$v_{i,j,k} = 0$$

sparse (unrolled) loops over i', j', k'
 $V_{i,j,k} = V_{i,j,k} + a_{i,j,k;i',j',k'} * p_{i',j',k'}$

 Domain decomposition in the 2/3-dim space (and not in the 1-dim algebraic space I=1..N)

Distributed Data

- Matrix A
- Boundary condition vector b
- Solution vector x
- Residual vector r
- Gradient vector p
- Halos are needed in this algorithm only for p (only p is multiplied with A)

```
Initialize matrix A;
Initialize boundary condition vector b;
Initialize i max (\leq size of A); Initialize \epsilon (>0);
Initialize solution vector x;
p = x;
v = Ap;
p = b - v;
r = p;
\alpha = (|| r ||_2)^2;
for ( i=0; (i < i_max) && (\alpha > \epsilon); i++)
{ v = Ap;
     \lambda = \alpha / (v,p)_2;
     x = x + \lambda p;
     r = r - \lambda v;
     \alpha_{new} = (|| r ||_2)^2;
      p = r + (\alpha_{new}/\alpha)p;
      \alpha = \alpha_{new};
}
Print x, \sqrt{\alpha}, ||b-Ax||_2;
```

Universität Stuttgart

Parallel Operations

Operation that include communication

- Halo exchange for vector p to prepare matrix-vector-multiply Ap
- Scalar product (v_1, v_2)
 - Algorithm:
 - Compute local scalar product
 - Compute global scalar product with MPI_Allreduce(..., MPI_SUM,...) over all local scalar product values
- Norm || *r* ||₂
 - Algorithm: same as scalar product
- Operations without communication
- Matrix-vector-multiply: v = Ap
 - requires updated halo
- AXPY: x or $y = \alpha x + y$

```
Initialize matrix A;
Initialize boundary condition vector b;
Initialize i_max (\leq size of A); Initialize \epsilon (>0);
Initialize solution vector x;
p = x;
v = Ap;
p = b - v;
r = p;
\alpha = (|| r ||_2)^2;
for (i=0; (i < i max) & (\alpha > \epsilon); i++)
{
      v = Ap;
      \lambda = \alpha / (\mathbf{v}, \mathbf{p})_2;
      x = x + \lambda p;
      r = r - \lambda v;
      \alpha_{new} = (||\mathbf{r}||_2)^2;
      p = r + (\alpha_{new}/\alpha)p;
      \alpha = \alpha_{new};
Print x, \sqrt{\alpha}, ||b-Ax||_2;
```


Parallel Solver - Optimization Hints

- Preserve regular pattern of the matrix!
- Don't use indexed array access (p(indexarr(i)), if it is not really necessary
- Always use many arrays REAL :: t(1000000), p(1000000), v(1000000)
- (instead of one array of a structure) TYPE data_struct_of_one_point REAL :: t REAL :: p REAL :: v END TYPE data_struct_of_one_point TYPE (data_struct_of_one_point) :: points(1000000)

General Optimization Hints

- Non-cubic may cause better computational efficiency
 - 50x50x50 cubic → boundary = $6 \times 50 \times 50 = 15,000$
 - vs. 100x25x50 → boundary = $2 \times 100 \times 25$
 - + 2 x 100 x 50
 - $+2 \times 25 \times 50 = 17,500$
 - 16 % larger boundary, and
 - (expecting totally ~10% communication)
 - \rightarrow 1.6% additional communication overhead
 - 100% longer most inner loop,
 which may cause more than 1.6 % computational speedup!!!

General Optimization Hints (continued)

- Overlapping of communication and computation
 - On MPP (massively parallel processors) systems and clusters of single-CPU-nodes:
 Overlapping normally not needed
 - Advantages on clusters of SMP (shared memory) nodes (hybrid hardware with hybrid programming model):
 1 CPU communicates while other CPUs compute
 - One must separate
 - Computation that <u>needs halo data</u>
 - \rightarrow <u>cannot</u> be overlapped with communication
 - Computation of grid points that do not need halo data
 - \rightarrow <u>can</u> be overlapped with communication
- Preserve pipelining / vectorization with your parallelization

HPCDF08 - Parallelization and Iterative Solver

How to implement sparse-matrix-vector-multiply I

• How can I implement the loops efficiently

```
do i=0,m-1

do j=0,n-1

Tnew(i,j) = (1+c_1)T(i,j) + c_2T(i+1,j) + c_3T(i-1,j) + c_4T(i,j+1) + c_5T(i,j-1)

end do

end do
```

- On vector-systems:
 - T and Tnew are defined on (-1:m, -1:n),
 - But the loop is done only on (0:m-1, 0:n-1)
 - The most-inner loop may be too small for good vectorization
 [e.g., on NEC SX-6, vector length should be a multiple of 256]
 - Interpret arrays as 1-dimensional T, Tnew(0 : (m+2)(n+2)-1)
 - One loop over all elements
 - Ignore senseless values in Tnew on boundary

How to implement sparse-matrix-vector-multiply II

- On cache-based systems:
 - Move small squares (2-dim) or cubes (3-dim) over the total area:

Universität Stuttgart

How to implement sparse-matrix-vector-multiply III

Important principle \rightarrow Single source!!!

```
#ifdef _OPENMP
    special OpenMP parallelization features
#endif

#ifdef USE_MPI
    MPI_Init(...);
    MPI_Comm_size(..., &size); MPI_Comm_rank(..., &my_rank);
#else
    size=1; my_rank=0;
#endif
...
#ifdef USE_CACHE
```

cache-version of sparse-matrix-vector-multiply #else vector-version

#endif

Classes of iterative solvers

- Parallel step algorithms:
 - $x_{iter} := func(x_{iter-1})$
 - e.g. Jacobi, CG, Richardson, ...
 - No problems with vectorization and parallelization
- Single step algorithms:
 - $x_{iter} := func(x_{iter-1}, \text{ some elements of } x_{iter})$
 - E.g. Gauß-Seidel, SOR, ...
 - Vectorization and parallelization is possible with red/black (checkerboard) method

Parallelization of single-step algorithms

Single step algorithms

• Example: SOR

$$- x_{m+1,i} := (1-\omega)x_{m,i} + \frac{\omega}{a_{ii}} (b_i - \sum_{j=1}^{1-1} a_{ij} x_{m+1,j} - \sum_{j=i}^{n} a_{ij} x_{m,j}) \qquad (m = \# iteration)$$

- If only direct neighbor exists, i.e. $a_{ij} \neq 0$ for j = "i+x", "i-x", "i+y", "i-y"
- and "i-x" and "i-y" are indexes less than i, then

$$\rightarrow x_{m+1,i}$$

$$:= (1-\omega)x_{m,i} + \frac{\omega}{a_{ii}} (b_i - \underbrace{a_{i,i-x} x_{m+1,i-x} - a_{i,i-y} x_{m+1,i-y}}_{q_{i,i-x} - a_{i,i+y} - a_{i,i+y} - a_{i,i+y} x_{m,i+y})$$

Left and lower x value must be already computed! Problem for parallelization and vectorization!

Red/black (checkerboard) ordering

- 6 nodes
- Each node has
 - 2 red and
 - 2 black checkers

- First, compute all red checkers, then communicate boundary
- Second, compute all black checkers and communicate boundary
- Inside of each checker: Use original sequence
- Parallel version is not numerically identical to serial version!!!

Literature

- G. Fox, M. Johnson, G. Lyzenga, S. Otto, S. Salmon, D. Walker: Solving Problems on Concurrent Processors. Prentice-Hall, 1988.
- Barry F. Smith, Petter E. Bjørstad, William D. Gropp: Domain Decomposition
 Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.
- Andreas Meister: Numerik linearer Gleichungssysteme. Vieweg, 1999.

Outline

- Parallelization of explicit or implicit solver
- Parallel hardware
- Parallel programming models
- Parallelization scheme

Major Parallel Hardware Architectures

- Shared Memory
 - SMP = Symmetric multiprocessing
- Distributed Memory
 - DMP = Distributed memory parallel
- Hierarchical memory systems
 - Combining both concepts

Multiprocessor - shared memory

- All CPUs are connected to all memory banks with same speed
- Uniform Memory Access (UMA)
- Symmetric Multi-Processing (SMP)
- Network types, e.g.
 - Crossbar \rightarrow independent access from each CPU
 - BUS \rightarrow one CPU can *block* the memory access of the other CPUs

Multicomputer - distributed memory

- Nodes are coupled by a node-interconnect
- Each CPU: Fast access to its own memory
 - but slower access to other CPU's memories
- Non-Uniform memory Access (NUMA)
- Different network types, e.g. BUS, torus, crossbar

Hybrid architectures

 Most modern high-performance computing (HPC) systems are clusters of SMP nodes

- SMP (symmetric multi-processing) inside of each node
- DMP (distributed memory parallelization) on the node interconnect

Universität Stuttgart

Introduction to Computational Fluid Dynamics in High Performance Computing

Interconnect topologies

Outline

- Parallelization of explicit or implicit solver
- Parallel hardware
- Parallel programming models
 - Parallelization Strategies [51-55] → Models [56] → OpenMP [56-58] → OpenMP-tasks [59-61] → MPI [62-66]
 - Limitations [67-68] → Advantages & Challenges [69]
- Parallelization scheme

Parallelization strategies – hardware resources

- Two major resources of computation:
 - Processor
 - Memory
- Parallelization means
 - **Distributing work** to processors
 - **Distributing data** (if memory is distributed)

and

- Synchronization of the distributed work
- Communication of *remote* data to *local* processor (if memory is distr.)
- Programming models offer a combined method for
 - Distribution of work & data, synchronization and communication

Distributing Work & Data

Work decomposition

• Based on loop decomposition

Data decomposition

 All work for a local portion of the data is done by the local processor

Domain decomposition

 Decomposition of work and data is done in a higher model, e.g. in the reality <u>do i=1,100</u> → i=1,25 i=26,50 i=51,75 i=76,100

> A(1:20, 1: 50) A(1:20, 51:100) A(21:40, 1: 50) A(21:40, 51:100)

Universität Stuttgart

Synchronization

- Synchronization
 - Is necessary
 - May cause
 - Idle time on some processors
 - Overhead to execute the synchronization primitive

Fall	2023
1 utt	2025

Communication

Do i=2,99 b(i) = a(i) + f*(a(i-1)+a(i+1)-2*a(i)) Enddo

- Communication is necessary on the boundaries
 - E.g. $b(26) = a(26) + f^*(a(25)+a(27)-2^*a(26))$

a(1:25),b(1:25)a(26,50),b(51,50)a(51,75),b(51,75)a(76,100),b(76,100)

Major Programming Models

1 OpenMP

- Shared Memory Directives
- To define the work decomposition
- No data decomposition
- Synchronization is implicit (can be also user-defined)
- OpenMP task based parallelization
 - Task based parallelization
 - User specifies tasks and task dependencies with directives
 - Parallelization (and synchronization) is implicit
- MPI (Message Passing Interface)
 - User specifies how work & data is distributed
 - User specifies how and when communication has to be done
 - By calling MPI communication **library-routines**

Introduction to Computational Fluid Dynamics in High Performance Computing

Shared Memory Directives - OpenMP I

!\$OMP END PARALLEL DO

Introduction to Computational Fluid Dynamics in High Performance Computing

Shared Memory Directives - OpenMP II

Shared Memory Directives - OpenMP III

- OpenMP
 - Standardized shared memory parallelism
 - Thread-based
 - The user has to specify the work distribution explicitly with directives
 - No data distribution, no communication
 - Mainly loops can be parallelized
 - Compiler translates OpenMP directives into thread-handling
 - Standardized since 1997
- Automatic SMP-Parallelization
 - E.g., Compas (Hitachi), Autotasking (NEC)
 - Thread based shared memory parallelism
 - With directives (similar programming model as with OpenMP)
 - Supports automatic parallelization of loops
 - Similar to automatic vectorization

Introduction to Computational Fluid Dynamics in High Performance Computing

Major Programming Models - Task based programming

- 1 Open
 - Shared Memory Directives
 - to define the work decomposition
 - no data decomposition
 - synchronization is implicit (can be also user-defined)
- 2) OpenMP task based parallelization
 - Task based parallelization
 - User specifies tasks and task dependencies with directives
 - Parallelization (and synchronization) is implicit
- MPI (Message Passing Interface)
 - User specifies how work & data is distributed
 - User specifies how and when communication has to be done
 - by calling MPI communication library-routines

58

Task based Parallelisation

Basic Idea:

- **Programmer defines tasks** as basic units for parallel execution where a task represents a more or less self-contained part of the code.
- **Runtime decides on the execution** of the tasks, managing the difficult problem of their ordering and hardware placement

HPCDF08 - Parallelization and Iterative
Solver

Task based Parallelisation - OpenMP

- Task + dependency model introduced with OpenMP 4.0
- **OpenMP tasks defined with** #prgams omp task
- Dependencies between tasks specified via input and output prameters using depend(in|out) clause
- Uses the task set of a surrounding parallel region as workers to execute the tasks

Task based Parallelisation - OpenMP Example

```
#pragma omp parallel
{
    #pragma omp single
    {
        int x, y, z;
    #pragma omp task depend( out: x )
        x = init();
    #pragma omp task depend( in: x ) depend( out: y)
        y = f(x);
    #pragma omp task depend( in: x ) depend( out: z)
        z = g(x);
    #pragma omp task depend( in: y, z )
        finalize(y, z);
}}
```


Major Programming Models - MPI

1 OpenMI

- Shared Memory Directives
- to define the work decomposition
- no data decomposition
- synchronization is implicit (can be also user-defined)
- 2) OpenMP task based parallelisation
 - Task based parallelisation
 - User specifies tasks and task dependencies with directives
 - Parallelisation (and synchronization) is implicit

3 MPI (Message Passing Interface)

- User specifies how work & data is distributed
- User specifies how and when communication has to be done
- By calling MPI communication **library-routines**

Fall	2023
1 att	2025

Message Passing Program Paradigm - MPI I

- Each processor in a message passing program runs a *sub-program*
 - Written in a conventional sequential language, e.g., C or Fortran,
 - Typically the same on each processor (SPMD)
- All work and data distribution is based on value of *myrank*
 - Returned by special library routine
- Communication via special send & receive routines (*message passing*)

Solver

Additional Halo Cells MPI II -

Fall 2023

Universität Stuttgart

Message Passing - MPI III

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror) Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror) m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m) jax=ja-1; jex=je+1 // extended boundary with halo

! storing into the halo cells

Summary – MPI IV

- MPI (Message Passing Interface)
 - Standardized distributed memory parallelism with message passing process-based
 - The user has to specify the <u>work distribution</u> & <u>data distribution</u>
 & all <u>communication</u>
 - Synchronization implicit by completion of communication
 - The application processes are calling MPI library-routines
 - Compiler generates normal sequential code
 - Typically domain decomposition is used
 - Communication across domain boundaries
 - Standardized
 - MPI-1: Version 1.0 (1994), Version 1.1 (1995), Version 1.2 (1997)
 - MPI-2: Version 2.0 (1997), Version 2.1 (2008), Version 2.2 (2009)
 - MPI-3: Version 3.0 (2012), Version 3.1 (2015)

Limitations I

- Automatic Parallelization
 - The compiler
 - Has no global view
 - Cannot detect independencies, e.g., of loop iterations
 - \rightarrow Oarallelizes only parts of the code
 - Only for shared memory and ccNUMA systems, see OpenMP
- OpenMP
 - Only for shared memory and ccNUMA systems
 - Mainly for loop parallelization with directives
 - Only for medium number of processors
 - Explicit domain decomposition also via rank of the threads

Limitations II

- HPF
 - Set-compute-rule may cause a lot of communication
 - HPF-1 (and 2) not suitable for irregular and dynamic data
 - JaHPF may solve these problems, but with additional programming costs
 - Can be used on any platform
- MPI
 - The amount of your hours available for MPI programming
 - Can be used on any platform, but communication overhead on shared memory systems

Universität Stuttgart

Advantages and Challenges

	OpenMP	HPF	MPI
Maturity of programming model	++	+	++
Maturity of standardization	+	+	++
Migration of serial programs	++	0	
Ease of programming (new progr.)	++	+	—
Correctness of parallelization	-	++	
Portability to any hardware architecture	_	++	++
Availability of implementations of the stand.	+	+	++
Availability of parallel libraries	0	0	0
Scalability to hundreds/thousands of		0	++
processors			
Efficiency	—	0	++
Flexibility – dynamic program structures	—	_	++
 irregular grids, triangles, tetra- hedrons, load balancing, redistribut. 	_	_	++

Outline

- Parallelization of explicit or implicit solver
- Parallel hardware
- Parallel programming models
- Parallelization scheme

Parallelizing an Application

Parallelizing an Application with MPI

- Designing the domain decomposition
 - How to achieve optimal load balancing
 - And minimal data transfer between the sub-domains
- Estimating [for a given platform]
 - Idle time due to non-optimal load balancing
 - Communication time
 - Calculating the estimated speedup
- Implementation
 - Domain decomposition with load balancing
 - Halo storage
 - Communication: Calculated data → halo cells of the neighbors [e.g., with MPI_Sendrecv (Cartesian grids) or non-blocking point-to-point communication (unstructured grids)]
 - Checking for global operations, e.g., dot-product, norm, abort criterion [to be implemented, e.g., with MPI_Allreduce]

Problems

- Scalability
 - Memory:
 - All large data should be distributed [and not duplicated on each MPI process]
 - Compute time:
 - How many processes can be used to have 95%, 90%, 80%, or 50% parallel efficiency?
- Efficient numerical schemes:
 - Multigrid only inside of a MPI process [and not over the total simulation domain]
 - Full data exchange between all processes
 [e.g., a redistribution of the data, (with MPI_Alltoall)]

Summary

- Parallelization of explicit or implicit solver
 - Domain decomposition
 - Halo data communication
 - Global operations
- Parallel hardware
 - Shared memory [SMP] / distributed memory / hybrid [cluster of SMPs]
- Parallel programming models
 - Distributing work and data
 - Additional overhead due to:
 - Communication / Synchronization / Non-optimal load balancing
 - OpenMP / HPF / MPI
- Parallelization scheme
 - Design / Estimation of Speedup / Implementation
 - Scalability problems

Data Parallelism - HPF, I.

Data Parallelism - HPF, II.

- HPF (High Performance Fortran)
 - standardized data distribution model
 - the user has to specify the <u>data distribution</u> explicitly
 - Fortran with language extensions and directives
 - compiler generates message passing or shared memory parallel code
 - work distribution & communication is implicit
 - set-compute-rule: the owner of the left-hand-side object computes the right-hand-side
 - typically arrays and vectors are distributed
 - draft HPF-1 in 1993, standardized since 1996 (HPF-2)
 - JaHPF since 1999