

High Performance Computing

A brief introduction

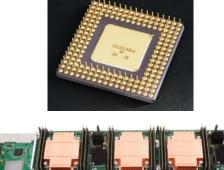
- Structure of supercomputers
- Using a supercomputer
 - Operating System
 - File system
 - Module environment
- Running computations
 - Jobs
 - Queues

- Structure of supercomputers
- Using a supercomputer
 - Operating System
 - File system
 - Module environment
- Running computations
 - Jobs
 - Queues

Supercomputers

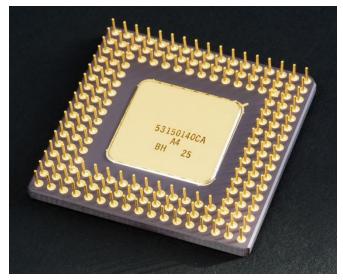
- Flow problems can become too large for one computer
 - Too much concurrent data for RAM
 - Too much total data for hard drive
 - Execution time in months, years or more
 - Many small flow problems

\rightarrow Use more computers


- Supercomputer, also called <u>cluster</u>
 - Components similar to PC
 - But, many and interconnected

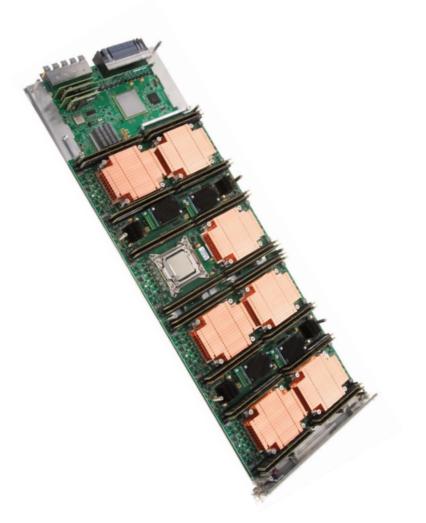
Structure of supercomputers

- Core (CPU)
- Node (Blade)
- Rack (Cabinet, Chassis)
- Cluster (Supercomputer)



Cores

- (Almost) identical to PC processors
- General purpose
- Hyperthreading: Two cores
 in one
- Sometimes specialized
 - E.g. graphics processors (GPU)
 - Limited operations, but faster


Source: Wikimedia Commons

Nodes

- Similar to PC motherboards
- 2-16 CPUs (+Hyperthr.)
- Usually central RAM
 - Hazelhen: 128 GB
- Types
 - Compute, Login,
 Management, IO
 - "Fat" (more RAM), GPU

Cabinet

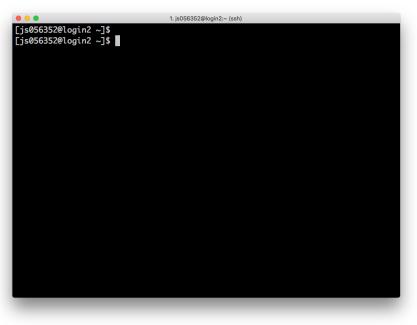
- Houses multiple nodes
- Cooling
- Power supply
- Interconnect (Network)
 - Faster than regular Ethernet
 - Makes cluster a cluster

Cluster

- Multiple cabinets
 - HoRUS: 2 cabinets, 1800 cores
 - SuperMUC: dozens of cabinets, 241000 cores
- Infrastructure (e.g. fire suppression)
- Central file storage (hard disks)
 - Sometimes individual nodes have hard disks

- Structure of supercomputers
- Using a supercomputer
 - Operating System
 - File system
 - Module environment
- Running computations
 - Jobs
 - Queues

Using a supercomputer


- Login nodes (2-4): user front end
 - Compile code
 - Submit jobs
 - Monitor job status
 - (Visualize results)
- Back end nodes (rest)
 - Scheduling system
 - Runs jobs on compute nodes
 - Handles IO

Operating system

- Linux
- Secure Shell (ssh)
- Console-based
 - X server: graphical applications
- Environment (which command calls which program)
- Linux file system
 - /home etc.

Workspaces

- /home usually limited in size (quota for each user)
- Workspaces for CFD data
 - Higher bandwidth
 - "Unlimited" storage (but limited in time)
- Workspace mechanism: allocate for X days
 - ws_allocate <name> <days>
 - ws_list
 - ws_release <name>

Modular environment

- Many users with different needs
 - Different versions of same software/library
 - Different software with same commands
- Reconfigure environment for every user?
- Mechanism on clusters: Module environment
 - Users load module that they need
- Example:

module load PrgEnv-intel
module avail

- Structure of supercomputers
- Using a supercomputer
 - Operating System
 - File system
 - Module environment
- Running computations
 - Jobs
 - Queues

Running computations: jobs

- An HPC computation is called a job
- Job Scheduler
 - Differs from cluster to cluster, but same functionality (Examples: PBS and SLURM)
 - Manages, when to run jobs
 - Efficient usage of resources
- One job = one script (PBS / SLURM)
 - Submit job: qsub / sbatch
 - Monitor jobs: qstat / squeue
 - Show system parts: qstat -Q / sinfo
 - Stop/Cancel job: qdel / scancel

Running computations: queues

- Jobs are put into queues (partitions in SLURM)
 - Different runtime
 - Different size
 - Different type of node (e.g. GPU)
- Each queue has default values
- You pick the queue, runtime and number of nodes

\rightarrow As many resources as necessary, as few as possible (with safety margin)