

Exercise

Create a performance map

Submit jobs

- Copy the data cp -r \$KURS/exercises/hpcfdx9 \$MYWS
- Change into the directory cd \$MYWS/hpcfdx9
- Submit all jobs
 qsub job_[n].pbs
 with n out of [010, 020, 040, 080, 160]

Extract performance data

- These steps are collected in the script
 - ./creategraphs.sh:
 - Solver writes performance data in timing.res, which has to be prepared
 - ./cleanup.sh
 - Create a database out of this file python timing2db.py timing.new
 - Use makeData.py to create data series that are more plottingfriendly
 - python makeData.py

Create the plot

- Create the plot (covered by the creategraphs.sh)
 gnuplot plot.gnu
- Display the result evince perfmap.eps