compute the volume of the current element as a fraction of a reference bounding hexahedral volume (stored in tree%global%effLength). The sum of all element fractions then gives the fractional fluid volume occupation inside the reference volume, i.e. the porosity
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(tem_varSys_op_type), | intent(in) | :: | fun |
Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables. |
||
type(tem_varSys_type), | intent(in) | :: | varSys |
The variable system to obtain the variable from. |
||
integer, | intent(in) | :: | elempos(:) |
Position of the TreeID of the element to get the variable for in the global treeID list. |
||
type(tem_time_type), | intent(in) | :: | time |
Point in time at which to evaluate the variable. |
||
type(treelmesh_type), | intent(in) | :: | tree |
global treelm mesh info |
||
integer, | intent(in) | :: | nElems |
Number of values to obtain for this variable (vectorized access). |
||
integer, | intent(in) | :: | nDofs |
Number of degrees of freedom within an element. |
||
real(kind=rk), | intent(out) | :: | res(:) |
Resulting values for the requested variable. Linearized array dimension: (n requested entries) x (nComponents of this variable) x (nDegrees of freedom) Access: (iElem-1)fun%nComponentsnDofs + (iDof-1)*fun%nComponents + iComp |
recursive subroutine deriveVolFrac( fun, varsys, elempos, time, tree, & & nElems, nDofs, res ) ! -------------------------------------------------------------------- ! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> Position of the TreeID of the element to get the variable for in the !! global treeID list. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: nElems !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! Linearized array dimension: !! (n requested entries) x (nComponents of this variable) !! x (nDegrees of freedom) !! Access: (iElem-1)*fun%nComponents*nDofs + !! (iDof-1)*fun%nComponents + iComp real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------- ! integer :: iElem real(kind=rk) :: dx real(kind=rk) :: boundVol ! -------------------------------------------------------------------- ! ! calculate the volume of the shape defined by the tree (only rectangulars) boundVol = tree%global%effLength(1) * tree%global%effLength(2) & & * tree%global%effLength(3) res = 0.0_rk if (boundvol > 0.0_rk) then do iElem = 1, nElems if ( .not. btest( tree%ElemPropertyBits( elemPos(iElem) ), & & prp_solid ) ) then dx = tem_ElemSize( tree, tree%treeID( elemPos(iElem) )) res( (iElem-1)*nDofs+1 ) = dx*dx*dx/boundVol end if end do ! iElem end if ! Avoid warnings about unused arguments if (time%sim < 0.0_rk) then write(logUnit(10),*) 'Negative time for variable ', & & trim(varSys%varName%val(fun%myPos)) end if end subroutine deriveVolFrac