! Copyright (c) 2014, 2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2014 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016-2017 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2019 Harald Klimach <harald.klimach@uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. !> This UTEST is to test variable system. !! load variables and access state and derive quantities from !! c pointer methoddata program tem_varSys_deriveVar_test use, intrinsic :: iso_c_binding, only: C_NEW_LINE, c_ptr, c_loc, c_f_pointer use env_module, only: rk, labelLen, fin_env use tem_bc_prop_module, only: tem_bc_prop_type use tem_general_module, only: tem_general_type use treelmesh_module, only: treelmesh_type use tem_time_module, only: tem_time_type use tem_utestEnv_module, only: load_env use tem_tools_module, only: upper_to_lower use tem_varSys_module, only: tem_varSys_init, tem_varSys_type, & & tem_varSys_op_type, & & tem_varSys_append_stateVar, & & tem_varSys_append_derVar, & & tem_varSys_proc_point, & & tem_varSys_proc_element, & & tem_varSys_proc_setParams, & & tem_varSys_proc_getParams, & & tem_varSys_proc_setupIndices, & & tem_varSys_proc_getValOfIndex use tem_grow_array_module, only: grw_intArray_type, init, append, destroy use tem_dyn_array_module, only: PositionOfVal use tem_spacetime_fun_module, only: tem_spacetime_fun_type, & & tem_load_spacetime, & & tem_st_fun_listElem_type, & & tem_st_fun_linkedList_type, append, & & tem_spacetime_for use aotus_module, only: open_config_chunk, close_config, flu_state use aot_table_module, only: aot_table_open, aot_table_close, & & aot_table_length, aot_get_val !mpi!nprocs = 1 implicit none type solver_type integer :: nComps integer :: nDofs real(kind=rk), allocatable :: state(:) type(treelmesh_type) :: tree type(tem_bc_prop_type) :: boundary type(tem_general_type) :: general end type solver_type type(tem_varSys_type) :: varSys procedure(tem_varSys_proc_point), pointer :: get_point => NULL() procedure(tem_varSys_proc_element), pointer :: get_element => NULL() procedure(tem_varSys_proc_setParams), pointer :: set_params => null() procedure(tem_varSys_proc_getParams), pointer :: get_params => null() procedure(tem_varSys_proc_setupIndices), pointer :: & & setup_indices => null() procedure(tem_varSys_proc_getValOfIndex), pointer :: & & get_valOfIndex => null() type(solver_type), target :: solver integer :: addedPos, statePos, densityPos integer :: iElem, iComp, iDof, elem_offset, comp_offset, nElems_track ! position in global treeID list integer, allocatable :: elemPos(:) logical :: wasAdded real(kind=rk), allocatable :: res(:) character(len=labelLen), allocatable :: input_varname(:) write(*,*) 'Hello from tem_varSys_test' ! load utest mesh call load_env( tree = solver%tree, & & boundary = solver%boundary, & & general = solver%general ) write(*,*) 'nElems ', solver%tree%nElems solver%nDofs = 1 solver%nComps = 4 allocate(solver%state(solver%tree%nElems*solver%nComps*solver%nDofs)) ! assign values to state do iElem = 1, solver%tree%nElems write(*,*) 'iElem ', iElem elem_offset = (iElem-1)*solver%nComps do iComp = 1, solver%nComps comp_offset = elem_offset + (iComp-1)*solver%nDofs do iDof = 1, solver%nDofs solver%state( comp_offset + iDof ) = real(comp_offset+iDof, kind=rk) end do write(*,*) 'iComp ', iComp , ' state ', & & solver%state(comp_offset + 1 : comp_offset + solver%nDofs) end do end do ! initialize variable system write(*,*) 'calling varsys init' call tem_varSys_init(me = varSys, systemName = 'utest') ! add state variable write(*,*) 'add state variable ' get_element => access_state call tem_varSys_append_stateVar( me = varSys, & & varName = 'state', & & nComponents = solver%nComps, & & method_data = c_loc(solver), & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = addedPos, & & wasAdded = wasAdded ) !KM! write(*,*) 'addedPos ', addedPos !KM! write(*,*) 'added variable ', trim(varSys%varname%val(addedPos)) !KM! write(*,*) 'state_varPos ', varSys%method%val(addedPos)%state_varPos statePos = PositionOfVal( varSys%varname, 'state' ) !KM! write(*,*) 'state_pos ', statePos nElems_track = 5 allocate(elemPos(nElems_track)) elemPos = (/ 1, 3, 5, 7, 8 /) write(*,*) write(*,*) 'add density variable' ! add density variable get_element => derive_density allocate(input_varname(1)) input_varname(1) = 'state' call tem_varSys_append_derVar( me = varSys, & & varName = 'density', & & operType = 'state', & & nComponents = 1, & & input_varname = input_varname, & & method_data = c_loc(solver), & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = addedPos, & & wasAdded = wasAdded ) write(*,*) 'addedPos ', addedPos write(*,*) 'added variable ', trim(varSys%varname%val(addedPos)) densityPos = PositionOfVal( varSys%varname, 'density' ) write(*,*) 'density_pos ', densityPos, & & 'input_varPos ', varSys%method%val(densityPos)%input_varPos allocate(res(nElems_track*varSys%method%val(densityPos)%nComponents*solver%nDofs)) ! access state array for given elemPos call varSys%method%val(densityPos)%get_element( & & varSys = varSys, & & elemPos = elemPos, & & time = solver%general%simControl%now, & & tree = solver%tree, & & nElems = nElems_track, & & nDofs = solver%nDofs, & & res = res ) do iElem = 1, nElems_track write(*,*) 'iElem ', iElem, 'elemPos ', elemPos(iElem) ! nComp = 1 write(*,*) 'density ', & & res((iElem-1)*solver%nDofs+1: iElem*solver%nDofs) end do write(*,*) 'PASSED' call fin_env() contains ! ****************************************************************************! !> access state variables subroutine access_state(fun, varsys, elempos, time, tree, n, nDofs, res) ! --------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> TreeID of the element to get the variable for. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: n !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! The first dimension are the n requested entries and the second !! dimension are the components of this variable. !! Third dimension are the degrees of freedom. real(kind=rk), intent(out) :: res(:) ! --------------------------------------------------------------------------! integer :: iElem, iComp, iDof, pos, nScalars type(solver_type), pointer :: fPtr ! --------------------------------------------------------------------------! write(*,*) 'access variable label: ', trim(varSys%varname%val(fun%myPos)) write(*,*) 'at time: ', time%sim write(*,*) 'tree%nElems: ', tree%nElems call C_F_POINTER( fun%method_Data, fPtr ) ! number of scalars in state array nScalars = varSys%nScalars res = 0.0_rk do iElem = 1, n ! if state array is defined level wise then use levelPointer(pos) ! to access state array pos = elemPos(iElem) do iDof = 1, nDofs do iComp = 1, fun%nComponents res( (iElem-1)*fun%nComponents*nDofs & & + (iDof-1)*fun%nComponents & & + iComp ) = & & fPtr%state( (pos-1)*nScalars*nDofs & & + (iDof-1)*nScalars & ! position of this variable in the state array & + fun%state_varPos(iComp) ) end do end do end do end subroutine access_state ! ****************************************************************************! ! ****************************************************************************! !> derive density variables subroutine derive_density(fun, varsys, elempos, time, tree, n, nDofs, res) ! --------------------------------------------------------------------------! !> Description of the method to obtain the variables, here some preset !! values might be stored, like the space time function to use or the !! required variables. class(tem_varSys_op_type), intent(in) :: fun !> The variable system to obtain the variable from. type(tem_varSys_type), intent(in) :: varSys !> TreeID of the element to get the variable for. integer, intent(in) :: elempos(:) !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> global treelm mesh info type(treelmesh_type), intent(in) :: tree !> Number of values to obtain for this variable (vectorized access). integer, intent(in) :: n !> Number of degrees of freedom within an element. integer, intent(in) :: nDofs !> Resulting values for the requested variable. !! !! The first dimension are the n requested entries and the second !! dimension are the components of this variable. !! Third dimension are the degrees of freedom. real(kind=rk), intent(out) :: res(:) ! -------------------------------------------------------------------------! integer :: iElem, iComp, iDof, pos, input_varPos, inVar_nComp type(solver_type), pointer :: fPtr real(kind=rk) :: dens ! -------------------------------------------------------------------------! write(*,*) 'derive variable label: ', trim(varSys%varname%val(fun%myPos)) write(*,*) 'at time: ', time%sim write(*,*) 'tree%nElems: ', tree%nElems call C_F_POINTER( fun%method_Data, fPtr ) input_varPos = fun%input_varPos(1) inVar_nComp = varSys%method%val(input_varPos)%nComponents write(*,*) 'input_varPos ', input_varPos, 'invar_nComp', inVar_nComp res = 0.0_rk do iElem = 1, n ! if state array is defined level wise then use levelPointer(pos) ! to access state array pos = elemPos(iElem) ! use state_varPos(iComp) if state has more than one variable do iDof = 1, nDofs dens = 0.0_rk do iComp = 1, inVar_nComp dens = dens + fPtr%state( (pos-1)*varSys%nScalars*nDofs & & + (iDof-1)*varSys%nScalars & & + varSys%method%val(input_varPos) & & %state_varPos(iComp) ) end do res( (iElem-1)*nDofs + iDof ) = dens end do end do end subroutine derive_density ! ****************************************************************************! end program tem_varSys_deriveVar_test