! Copyright (c) 2019 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2019 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2019 Peter Vitt <peter.vitt2@uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. !> summary: This module contains lines description and growing array !! author: Kannan Masilamani !! for lines ! Copyright (c) 2012-2013 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2012 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2012-2016 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2012, 2015-2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2013 Daniel Harlacher <d.harlacher@grs-sim.de> ! Copyright (c) 2014 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2014 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2015-2017 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2015-2016 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Daniel Fleischer <daniel.fleischer@student.uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2017 Daniel Petró <daniel.petro@student.uni-siegen.de> ! ! Parts of this file were written by Harald Klimach, Simon Zimny and Manuel ! Hasert for German Research School for Simulation Sciences GmbH. ! ! Parts of this file were written by Harald Klimach, Kannan Masilamani, ! Daniel Harlacher, Kartik Jain, Verena Krupp, Jiaxing Qi, Peter Vitt, ! Daniel Fleischer, Tobias Girresser and Daniel Petró for University Siegen. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! This file contains the source code for growing and dynamic arrays. ! This is used for arrays of primitives (int, long_int, real, ...) as well as ! for arrays of derived datatypes (tem_variable_type,...). ! ! To use these macros include the following to your source file. ! ! Smart growing array (GA) for ?tstring? ! Growing Arrays: ! ! declaration ! ! ! implementation ! ! ----------------------------------------------------------------- ! 2d Array, which can grow in second dimension only (GA2d) ! tname ... indicates type of dynamic array (long, int, real, ...) ! !------------------------------------------------------------------------------ ! ! dynamic Arrays: ! ! declaration ! ! ! implementation ! module tem_line_module use env_module, only: rk, minLength, zeroLength, eps use tem_math_module, only: cross_product3D use tem_cube_module, only: tem_cube_type use tem_triangle_module, only: tem_triangle_type use tem_point_module, only: tem_point_type use tem_logging_module, only: logUnit, tem_toStr use tem_float_module, only: operator(.flt.), & & operator(.fge.), & & operator(.feq.) implicit none private public :: grw_lineArray_type public :: tem_line_type public :: tem_lineCubeOverlap public :: init, append, truncate, destroy, empty, placeAt public :: intersect_RayTriangle public :: fraction_PointLine !> This type contains line definition i.e origin and !! vector which defines the direction of the line type tem_line_type real(kind=rk) :: origin(3) !< line origin real(kind=rk) :: vec(3) !< vector which defines direction of the line end type tem_line_type !> growing array type for type(tem_line_type) type grw_linearray_type integer :: nvals = 0 integer :: containersize = 0 type(tem_line_type), allocatable :: val(:) end type !> initialize the dynamic array interface init module procedure init_ga_line end interface !> truncate the array, meaning !! cut off the trailing empty entries interface truncate module procedure truncate_ga_line end interface !> empty the entries without changing arrays interface empty module procedure empty_ga_line end interface !> destroy the dynamic array interface destroy module procedure destroy_ga_line end interface !> insert an element at a given position interface placeat module procedure placeat_ga_line module procedure placeat_ga_line_vec end interface !> append a value to the dynamic array !! and return its position. interface append module procedure append_ga_line module procedure append_ga_line_vec end interface !> increase the size of the container !! for the array. interface expand module procedure expand_ga_line end interface contains ! *****************************************************************************! !> Function computes intersection of line with cube !! !! If optional argument pntIntersect contains the intersection point !! of the line with cube function tem_lineCubeOverlap( line, cube, pntIntersect ) result(overlap) ! ---------------------------------------------------------------------------! !> line segment to check for intersection type(tem_line_type), intent(in) :: line !> cube to intersect with type(tem_cube_type), intent(in) :: cube !> intersection point if there is intersection real(kind=rk), optional, intent(out) :: pntIntersect(3) logical :: overlap ! ---------------------------------------------------------------------------! real(kind=rk) :: proj real(kind=rk) :: loc_pntIntersect(3) ! ---------------------------------------------------------------------------! overlap = .false. !check whether line is intersect the cube by rayCubeOverlap test !then check whether intersected point is within the line segment if(rayCubeOverlap( line, cube, loc_pntIntersect )) then !project the intersected point on the line !and return true only if intersected point is !within line segment length !The point is inside the line segment if the !projected value is >= 0 and < 1. proj = dot_product(loc_pntIntersect-line%origin, line%vec) & & / dot_product(line%vec, line%vec) overlap = (proj >= 0.0_rk) .and. (proj < 1.0_rk) endif if(present(pntIntersect)) pntIntersect = loc_pntIntersect end function tem_lineCubeOverlap ! ******************************************************************************! ! *****************************************************************************! !> Function computes intersection of ray with cube !! !! The algorithm for lineCubeOverlap used in this function is !! taken from !! http://www.siggraph.org/education/materials/HyperGraph/raytrace/ !! rtinter3.htm !! http://gamedev.stackexchange.com/questions/18436/ !! most-efficient-aabb-vs-ray-collision-algorithms function rayCubeOverlap( line, cube, pntIntersect ) result(overlap) ! ---------------------------------------------------------------------------! !> line segment to check for interection type(tem_line_type), intent(in) :: line !> cube to check intersection of line type(tem_cube_type), intent(in) :: cube !> intersection point if there is intersection real(kind=rk), optional, intent(out) :: pntIntersect(3) logical :: overlap ! ---------------------------------------------------------------------------! integer :: i real(kind=rk) :: t_near, t_far real(kind=rk) :: T_1, T_2, tmp ! ---------------------------------------------------------------------------! !initialize near point and var point t_near = 0.0_rk t_far = huge(t_far) dirLoop: do i=1,3 !x,y,z if (line%vec(i) .feq. 0._rk) then !line parallel to planes in this direction. !Line exactly on the cube origin is considered as overlap if ( (line%origin(i) < cube%origin(i)) & & .or. (line%origin(i) >= cube%endPnt(i)) ) then !parallel and outside cube : no intersection possible overlap = .false. return end if else !line not parallel to cube !1st intersection point on one side of the cube plane T_1 = (cube%origin(i) - line%origin(i)) / line%vec(i) !2nd intersection point on one side of the cube plane T_2 = (cube%endPnt(i) - line%origin(i)) / line%vec(i) if (T_1 > T_2) then ! we want T_1 to hold values for intersection with near plane tmp = T_2 T_2 = T_1 T_1 = tmp end if if (T_1 > t_near) t_near = T_1 if (T_2 < t_far) t_far = T_2 if ( (t_near > t_far) .or. (t_far < 0) ) then overlap = .false. return end if end if end do dirLoop !point of intersection if(present(pntIntersect)) then pntIntersect = line%origin + t_near * line%vec endif !If we made it here, there is an intesection overlap = .true. end function rayCubeOverlap ! ******************************************************************************! ! *****************************************************************************! !> Function computes intersection of ray with triangle !! !! http://geomalgorithms.com/a06-_intersect-2.html !! intersect_RayTriangle(): intersect a ray with a 3D triangle !! Input: a ray R, and a triangle T !! Output: *I = intersection point (when it exists) !! Return: -1 = triangle is degenerate (a segment or point) !! 0 = disjoint (no intersect) !! 1 = intersect in unique point I1 !! 2 = are in the same planeint !! todo: when line lies in triangle, need to treat properly function intersect_RayTriangle( line, triangle, intersect_p ) result(isIntersect) ! ---------------------------------------------------------------------------! !> line segment to check for interection type(tem_line_type), intent(in) :: line !> cube to check intersection of line type(tem_triangle_type), intent(in) :: triangle !> intersection point if there is intersection type( tem_point_type), optional, intent(out) :: intersect_p logical :: isIntersect ! ---------------------------------------------------------------------------! real(kind=rk) :: u(3), v(3), n(3) ! triangle vectors and normal vector real(kind=rk) :: dir(3), w0(3), w(3) ! ray vectors real(kind=rk) :: r, a, b ! params to calc ray-plane intersect real(kind=rk) :: uu, uv, vv, wu, wv, D real(kind=rk) :: s, t real(kind=rk) :: temp_p(3) ! ---------------------------------------------------------------------------! isIntersect = .false. ! set not intersect as default ! get triangle edge vectors u & v, and plane normal n u(:) = triangle%nodes(:,2) - triangle%nodes(:,1) v(:) = triangle%nodes(:,3) - triangle%nodes(:,1) n = cross_product3D( u, v ) ! triangle is degenerate ! do not deal with this case if (all(n .feq. 0._rk)) return dir = line%vec ! ray direction vector w0 = line%origin - triangle%nodes(:,1) a = -dot_product( n, w0); b = dot_product( n, dir); ! if ray parallel to triangle plane, treat it as no intersecting if (abs(b) < eps .and. abs(a) > tiny(a)) return ! { if (a == 0.0_rk) ! ray lies in triangle plane ! return 2; ! else return 0; ! ray disjoint from plane ! } if (abs(b) < eps) then ! origin is very close to triangle plane, but parallel. ! Just use the origin itself as point to check. r = 0.0_rk else ! get intersect point of ray with triangle plane r = a / b if (r < 0._rk ) then ! ray goes away from triangle return endif end if ! for a segment, also test if (r > 1.0) => no intersect ! intersect point of ray and plane temp_p = line%origin + r * dir ! is I inside T? uu = dot_product(u,u) uv = dot_product(u,v) vv = dot_product(v,v) w = temp_p - triangle%nodes(:,1) wu = dot_product(w,u) wv = dot_product(w,v) D = uv * uv - uu * vv ! get and test parametric coords s = (uv * wv - vv * wu) / D ! point is outside triangle if (s < 0._rk-eps .or. s > 1._rk+eps) then return endif t = (uv * wu - uu * wv) / D ! point is outside triangle if (t < 0._rk-eps .or. (s + t) > 1._rk+eps) then return endif isIntersect = .true. ! point is inside triangle if( present( intersect_p ) ) then intersect_p%coord = temp_p endif end function intersect_RayTriangle ! ******************************************************************************! ! ******************************************************************************! !> This evaluates relative distance of given point on line function fraction_PointLine( point, line ) result( frac ) type( tem_point_type ), intent(in) :: point type( tem_line_type ), intent(in) :: line real(kind=rk) :: numerator, denominator, frac numerator = ( point%coord(1) - line%origin(1) ) & & * ( point%coord(1) - line%origin(1) ) & & + ( point%coord(2) - line%origin(2) ) & & * ( point%coord(2) - line%origin(2) ) & & + ( point%coord(3) - line%origin(3) ) & & * ( point%coord(3) - line%origin(3) ) denominator = line%vec(1) * line%vec(1) & & + line%vec(2) * line%vec(2) & & + line%vec(3) * line%vec(3) frac = sqrt( numerator / denominator ) end function fraction_PointLine ! ******************************************************************************! subroutine init_ga_line(me, length) type(grw_linearray_type), intent(out) :: me !< dynamic array to init integer, intent(in), optional :: length !< initial length of the container if (present(length)) then me%containersize = length else me%containersize = zerolength end if ! deallocate ... if( allocated( me%val )) & deallocate(me%val) ! ... and reallocate allocate(me%val(me%containersize)) me%nvals = 0 end subroutine init_ga_line subroutine destroy_ga_line(me) type(grw_linearray_type), intent(inout) :: me !< dynamic array to destroy me%containersize = 0 me%nvals = 0 if( allocated( me%val ) ) deallocate(me%val) end subroutine destroy_ga_line subroutine truncate_ga_line(me) !------------------------------------------------------------------------ type(grw_linearray_type) :: me !< array to truncate !------------------------------------------------------------------------ type(tem_line_type), allocatable :: tarray(:) !------------------------------------------------------------------------ integer :: ii !------------------------------------------------------------------------ ! nothing to do if container size is not larger than the number of values ! in the array. if (me%containersize > me%nvals) then allocate(tarray(me%nvals)) do ii = 1, me%nvals tarray(ii) = me%val(ii) end do call move_alloc(tarray, me%val) me%containersize = me%nvals end if end subroutine truncate_ga_line subroutine empty_ga_line(me) !------------------------------------------------------------------------ type(grw_linearray_type) :: me !< array to sorttruncate !------------------------------------------------------------------------ me%nvals = 0 end subroutine empty_ga_line !> adds the value to a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! element at the requested position will be replaced. subroutine placeat_ga_line(me, val, pos, length) type(grw_linearray_type) :: me !< array to place the value into type(tem_line_type), intent(in) :: val !< value to place at the given position integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (pos > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = pos, length = length) end if me%nvals = max( pos, me%nvals ) me%val(pos) = val end subroutine placeat_ga_line !> adds the values starting from a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! elements starting from the requested position will be replaced up to !! the element at position `pos + size(val) - 1`. subroutine placeat_ga_line_vec(me, val, pos, length) type(grw_linearray_type) :: me !< array to append the value to type(tem_line_type), intent(in) :: val(:) !< values to append integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length integer :: ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if ub = pos + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = pos, ub me%val(ii) = val(1+ii-pos) end do end subroutine placeat_ga_line_vec subroutine append_ga_line(me, val, length) type(grw_linearray_type) :: me !< array to append the value to type(tem_line_type), intent(in) :: val !< value to append !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (me%nvals+1 > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, length = length) end if me%nvals = me%nvals+1 me%val(me%nvals) = val end subroutine append_ga_line subroutine append_ga_line_vec(me, val, length) type(grw_linearray_type) :: me !< array to append the value to type(tem_line_type), intent(in) :: val(:) !< values to append !> optional length to expand the array integer, intent(in), optional :: length integer :: lb, ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if lb = me%nvals + 1 ub = lb + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = lb, ub me%val(ii) = val(1+ii-lb) end do end subroutine append_ga_line_vec subroutine expand_ga_line(me, pos, length) type(grw_linearray_type) :: me !< array to resize integer, intent(in), optional :: pos !< optional predefined position !> optional length to expand the array integer, intent(in), optional :: length type(tem_line_type), allocatable :: swpval(:) integer :: explen, ii explen = 0 ! increase the container by the requested length of double it if( present(length) ) then explen = max( length, minlength ) else ! set the global minimum length, if doubling would be smaller than that explen = max(me%containersize, minlength) end if ! if a position is given, increase the container to at least the size to ! fit the position. if( present(pos) ) explen = max(explen, pos-me%containersize) ! if the current size plus explen exceeds the max container size, ! reduce the size to the max container size. if( (huge(me%containersize) - explen) <= me%containersize) then ! set max container size me%containersize = huge(me%containersize) else ! set the new container size me%containersize = me%containersize + explen end if if ( me%nvals > 0 ) then allocate(swpval(me%containersize)) do ii = 1, me%nvals swpval(ii) = me%val(ii) end do call move_alloc( swpval, me%val ) else ! me%nvals == 0 if ( allocated(me%val) ) deallocate( me%val ) allocate( me%val(me%containersize) ) end if end subroutine expand_ga_line end module tem_line_module !> \page line Line !! Lines are defined in the configuration file through canonical !! geometry kind with an origin and vector defining the length !! and direction of the line. \n !! Valid definition: !! \li Single line !! \verbatim !! geometry = { !! kind = 'canoND', !! object = { !! origin = { 0.0,0.0,0.0 }, !! vec = { 2.0,0.0,0.0 } !! } !! } !! \endverbatim !! \li Multiple line !! \verbatim !! geometry = { !! kind = 'canoND', !! object = { !! { !! origin = { 0.0,0.0,0.0 }, !! vec = { 2.0,0.0,0.0 } !! }, !! { !! origin = { 1.0,0.0,0.0 }, !! vec = { 0.0,2.0,0.0 } !! }, !! } !! } !! \endverbatim !! \n\n !! Seeder file to generate the mesh with line is generated using above canonical !! geometry kind and the code is given below: !! \include testsuite/line/seeder.lua !! \n\n !! The mesh generated with line inside mesh: !! \image html line.png !! \n !! \image html line_withedges.png !! \n\n !! Example lua file is available at \link testsuite/line/seeder.lua !! \example testsuite/line/seeder.lua