ply_integrateLeg Function

public pure function ply_integrateLeg(integrand, maxdegree) result(integral)

Integrate the integrand function in Legendre basis, and represent the integral again in the Legendre basis up to the maximal degree.

The maximal degree needs to be one higher than the maximal degree of the integrand in order to fully represent the integral, otherwise the result is truncated and only an approximation up to maxdegree is obtained.

The integral needs to have a length of maxdegree+1. maxdegree needs to be non-negative. Thus, integral needs to be an array with a length of at least 1!

Implemented property of Legendre Polynomials: L_i(x) = 1/(2*i + 1) * d/dx [ L_{i+1}(x) - L_{i-1}(x) ]

Arguments

Type IntentOptional Attributes Name
real(kind=rk), intent(in) :: integrand(:)

Coefficients of the function to integrate in Legendre basis.

integer, intent(in) :: maxdegree

Maximal polynomial degree for the integral, should be larger than the degree of the integrand

Return Value real(kind=rk), (maxdegree+1)

Legendre coefficients of the resulting integral.


Called by

proc~~ply_integrateleg~~CalledByGraph proc~ply_integrateleg ply_integrateLeg program~approximate_1d_jump approximate_1D_jump program~approximate_1d_jump->proc~ply_integrateleg program~integrateleg_test integrateLeg_test program~integrateleg_test->proc~ply_integrateleg

Contents