! Copyright (c) 2013-2016 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2014 Jens Zudrop <j.zudrop@grs-sim.de> ! Copyright (c) 2015-2016 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2015-2017 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2016 Tobias Girresser <tobias.girresser@student.uni-siegen.de> ! Copyright (c) 2017 Daniel PetrĂ³ <daniel.petro@student.uni-siegen.de> ! ! Permission to use, copy, modify, and distribute this software for any ! purpose with or without fee is hereby granted, provided that the above ! copyright notice and this permission notice appear in all copies. ! ! THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES ! WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ! ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES ! WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ! ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF ! OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ! **************************************************************************** ! !> Helper routines for the acoustic equation system. module atl_eqn_acoustic_hlp_module use aotus_module, only: flu_State use tem_aux_module, only: tem_abort use tem_bc_module, only: tem_bc_state_type use tem_logging_module, only: logUnit use tem_stringKeyValuePair_module, only: tem_stringKeyValuePair_type use tem_stringKeyValuePair_module, only: grw_stringKeyValuePairArray_type, & & init, truncate, append use atl_equation_module, only: atl_equations_type, & & atl_eqn_var_trafo_type use atl_bc_state_module, only: atl_load_bc_state use atl_eqn_acoustic_module, only: atl_load_acoustic use atl_eqn_acoustic_var_module, only: atl_init_acoustic_vars, & & atl_init_acoustic_sourceTerms use atl_eqn_acoustic_2d_var_module, only: atl_init_acoustic_2d_vars,& & atl_init_acoustic_2d_sourceTerms use atl_varSys_module, only: atl_varSys_solverData_type use atl_source_types_module, only: atl_init_source_type implicit none private public :: atl_eqn_acoustic_load_bc public :: atl_eqn_acoustic_init contains !> Initialization of the Acoustic equation. !! !! This routine sets up the necessary infrastructure for the Acoustic !! equations. !! It reads the configuration from the given script in conf under the table !! provided in thandle and sets function pointers and variables accordingly. subroutine atl_eqn_acoustic_init( conf, thandle, equation, nDimensions, & & initSource, varSys_data ) ! --------------------------------------------------------------------------- !> Handle to the Lua configuration type(flu_State), intent(in) :: conf !> Handle to the equation table in the Lua script given in conf. integer, intent(in) :: thandle !> Equation system to set with this routine. type(atl_equations_type), intent(inout) :: equation !> Number of spatial dimensions, the Euler equations should live on. !! !! Has to be 1, 2 or 3. integer, intent(in) :: nDimensions !> Type to be filled with the possible source variables for the equation !! system. These source variables are later on used to extract the !! corresponding information from the configuration file. type(atl_init_source_type), intent(inout) :: initSource !> the pointer to the data required for the varsys type(atl_varSys_solverData_type), intent(inout) :: varSys_data ! --------------------------------------------------------------------------- equation%isNonlinear = .false. equation%nDimensions = nDimensions ! timesetp is static and not changing over simulationtime equation%adaptive_timestep = .false. ! define the dimension of the acoustic datatype, required for different ! size of background velocity array equation%acoustic%ndims = nDimensions equation%load_bc => atl_eqn_acoustic_load_bc select case(nDimensions) case(2) call atl_init_acoustic_2d_vars( equation = equation, & & methodData = varSys_data ) call atl_load_acoustic( acoustic = equation%acoustic, & & conf = conf, & & eq_table = thandle ) call atl_init_acoustic_2d_sourceTerms( initSource%poss_srcVars, & & initSource%eval_source ) case(3) call atl_init_acoustic_vars( equation = equation, & & methodData = varSys_data ) call atl_load_acoustic( acoustic = equation%acoustic, & & conf = conf, & & eq_table = thandle ) call atl_init_acoustic_sourceTerms( initSource%poss_srcVars, & & initSource%eval_source ) end select end subroutine atl_eqn_acoustic_init ! ***************************************************************************** !> Reading boundary conditions for the acoustic equations. !! !! Need to set 4 bc_states here, typically the primitive variables. !! Vectorial quantities are described either by the normal component and !! a tangential definition that has to be the same in all directions, !! or in the universal coordinate system. !! The normal is defined as pointing inwards. !! Internally the tangential definition is duplicated to get the same size !! for vectorial quantities irregardless of the coordinate system it is !! defined in. !! !! This routine has to conform to the interface definition !! atl_equation_module#eqn_load_bc. subroutine atl_eqn_acoustic_load_bc( equation, & & bc_state, bc_state_gradient, & & bc_varDict, bc_varDict_gradient, & & bc_normal_vec, bc_normal_vec_gradient, & & bc_trafo, bc_trafo_gradient, & & bc_label, bc_kind, thandle, & & conf ) ! --------------------------------------------------------------------------- class(atl_equations_type), intent(inout) :: equation type(tem_bc_state_type), allocatable, intent(out) :: bc_state(:) type(tem_bc_state_type), allocatable, intent(out) :: bc_state_gradient(:) !> Dictionary of boundary variables in bc_state type(grw_stringKeyValuePairArray_type), intent(out) :: bc_varDict !> Dictionary of boundary variables in bc_state_gradient type(grw_stringKeyValuePairArray_type), intent(out) :: bc_varDict_gradient logical, intent(out) :: bc_normal_vec logical, intent(out) :: bc_normal_vec_gradient character(len=*), intent(in) :: bc_label character(len=*), intent(in) :: bc_kind type(atl_eqn_var_trafo_type), intent(out) :: bc_trafo type(atl_eqn_var_trafo_type), intent(out) :: bc_trafo_gradient integer, intent(in) :: thandle type(flu_State) :: conf ! --------------------------------------------------------------------------- integer :: nDims type(tem_stringKeyValuePair_type) :: kvp ! --------------------------------------------------------------------------- nDims = equation%nDimensions ! The acoustic equation requires nDims + 1 variables to be set: allocate(bc_state(equation%varSys%nScalars)) allocate(bc_state_gradient(0)) bc_normal_vec_gradient = .false. !!VK allocate(bc_normal_vec_gradient(2)) !!VK allocate(bc_trafo_gradient(2)) ! Initialize varDict for current boundary call init( me = bc_varDict ) call init( me = bc_varDict_gradient ) ! Constant zero variable for non-configurable boundary variable kvp%value = 'zero_const' ! For acoustic equation primitive and conservative variables are the same, ! thus we set the transfamation for all boundary condition bc_trafo%identity = .true. ! The bc_trafo function pointer %from and % to are intilized to NULL and ! since it is not required for acoustic equation there are not set to any ! function here! select case(bc_kind) case('slipwall', 'wall') bc_normal_vec = .true. ! Extrapolate density bc_state(1)%state_name = 'density' bc_state(1)%style = 'neumann' bc_state(1)%isDefined = .true. kvp%key = trim(bc_state(1)%state_name) call append( me = bc_varDict, val = kvp ) ! Prescribe v_normal bc_state(2)%state_name = 'v_norm' bc_state(2)%style = 'dirichlet' bc_state(2)%isDefined = .true. kvp%key = trim(bc_state(2)%state_name) call append( me = bc_varDict, val = kvp ) if (nDims > 1) then ! Extrapolate v_tangential_1 bc_state(3)%state_name = 'v_tan' bc_state(3)%style = 'neumann' bc_state(3)%isDefined = .true. kvp%key = trim(bc_state(3)%state_name) call append( me = bc_varDict, val = kvp ) if (nDims > 2) then ! Extrapolate v_tangential_2 bc_state(4)%state_name = 'v_tan2' bc_state(4)%style = 'neumann' bc_state(4)%isDefined = .true. kvp%key = trim(bc_state(4)%state_name) call append( me = bc_varDict, val = kvp ) end if end if case('conservatives') bc_normal_vec = .false. ! Impose density call atl_load_bc_state( bc = bc_state(1), & & state_name = 'density', & & conf = conf, & & bc_handle = thandle, & & varSys = equation%varSys, & & varDict = bc_varDict ) ! Impose momentum x call atl_load_bc_state( bc = bc_state(2), & & state_name = 'velocityX', & & conf = conf, & & bc_handle = thandle, & & varSys = equation%varSys, & & varDict = bc_varDict ) if (nDims > 1) then ! Impose momentum y call atl_load_bc_state( bc = bc_state(3), & & state_name = 'velocityY', & & conf = conf, & & bc_handle = thandle, & & varSys = equation%varSys, & & varDict = bc_varDict ) if (nDims > 2) then call atl_load_bc_state( bc = bc_state(4), & & state_name = 'velocityZ', & & conf = conf, & & bc_handle = thandle, & & varSys = equation%varSys, & & varDict = bc_varDict ) end if end if if (.not. all(bc_state(:)%isDefined)) then write(logUnit(1),*) 'For boundary condition conservatives you have to' write(logUnit(1),*) 'set all conservative variables (density, ' write(logUnit(1),*) 'velocityX, velocityY, velocityZ) this set is not' write(logUnit(1),*) ' complete for ' // trim(bc_label) // '!' write(logUnit(1),*) 'Do not know how to proceed, ABORTING...' call tem_abort() end if case('outflow') bc_normal_vec = .true. ! Extrapolate density bc_state(1)%state_name = 'density' bc_state(1)%style = 'neumann' bc_state(1)%isDefined = .true. kvp%key = trim(bc_state(1)%state_name) call append( me = bc_varDict, val = kvp ) ! Extrapolate v_normal bc_state(2)%state_name = 'v_norm' bc_state(2)%style = 'neumann' bc_state(2)%isDefined = .true. kvp%key = trim(bc_state(2)%state_name) call append( me = bc_varDict, val = kvp ) if (nDims > 1) then ! Extrapolate v_tangential_1 bc_state(3)%state_name = 'v_tan' bc_state(3)%style = 'neumann' bc_state(3)%isDefined = .true. kvp%key = trim(bc_state(3)%state_name) call append( me = bc_varDict, val = kvp ) if (nDims > 2) then ! Extrapolate v_tangential_2 bc_state(4)%state_name = 'v_tan2' bc_state(4)%style = 'neumann' bc_state(4)%isDefined = .true. kvp%key = trim(bc_state(4)%state_name) call append( me = bc_varDict, val = kvp ) end if end if case default write(logUnit(1),*) 'Unknown boundary kind "' // trim(bc_kind) // '"' write(logUnit(1),*) 'for boundary "' // trim(bc_label) // '".' write(logUnit(1),*) 'Available boundary kinds for acoustic equations:' write(logUnit(1),*) ' * slipwall / wall' write(logUnit(1),*) ' * conservatives' write(logUnit(1),*) ' * inflow and inflow_normal' write(logUnit(1),*) ' * outflow' write(logUnit(1),*) 'Do not know how to proceed, ABORTING...' call tem_abort() end select call truncate( me = bc_varDict ) call truncate( me = bc_varDict_gradient ) if (size(bc_state) /= bc_varDict%nVals) then write(logUnit(1),*) 'Nr. of state variables does not match size of '//& & 'varDict' call tem_abort() end if if (size(bc_state_gradient) /= bc_varDict_gradient%nVals) then write(logUnit(1),*) 'Nr. of state gradient variables does not match '//& & 'size of varDict_gradient' call tem_abort() end if end subroutine atl_eqn_acoustic_load_bc ! **************************************************************************** end module atl_eqn_acoustic_hlp_module