! Copyright (c) 2015-2017, 2019 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2015 Nikhil Anand <nikhil.anand@uni-siegen.de> ! Copyright (c) 2016 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2016 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2016-2017 Tobias Girresser <tobias.girresser@student.uni-siegen.de> ! Copyright (c) 2016-2017 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2017 Daniel PetrĂ³ <daniel.petro@student.uni-siegen.de> ! ! Permission to use, copy, modify, and distribute this software for any ! purpose with or without fee is hereby granted, provided that the above ! copyright notice and this permission notice appear in all copies. ! ! THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES ! WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ! ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES ! WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ! ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF ! OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ! **************************************************************************** ! !> summary: module to configure information about the variables of the maxwell !! equations module atl_eqn_maxwell_2d_var_module use, intrinsic :: iso_c_binding, only: c_loc, c_ptr use env_module, only: rk use tem_time_module, only: tem_time_type use tem_varSys_module, only: tem_varSys_type, & & tem_varSys_init, & & tem_varSys_append_stateVar, & & tem_varSys_proc_point, & & tem_varSys_proc_element, & & tem_varSys_proc_setparams, & & tem_varSys_proc_getparams, & & tem_varSys_proc_setupIndices, & & tem_varSys_proc_getValOfIndex use tem_varMap_module, only: tem_possible_variable_type, & & init, append use ply_poly_project_module, only: ply_poly_project_type, & & assignment(=) use atl_equation_module, only: atl_equations_type use atl_varSys_module, only: atl_varSys_solverData_type, & & atl_varSys_getStateForElement, & & atl_varSys_getStateForPoint, & & atl_get_new_varSys_data_ptr use atl_cube_elem_module, only: atl_cube_elem_type use atl_source_types_module, only: atl_eqn_sourceMap_type, & & atl_source_op_type use atl_equation_source_module, & & only: atl_equation_evaluate_source_nodal, & & atl_equation_evaluate_source_modal, & & atl_compute_source_interface implicit none private public :: atl_init_maxwell_2d_vars public :: atl_append_maxwell_2d_vars public :: atl_init_maxwell_2d_sourceTerms public :: atl_eval_source_currentDensity_2d contains ! ****************************************************************************** !> summary: init the variables for maxwell equation (2D, TE-mode formulation). subroutine atl_init_maxwell_2d_vars( equation, methodData ) ! -------------------------------------------------------------------------- !> The equation system type(atl_equations_type), intent(inout) :: equation !> the pointer to the data required for the varsys type(atl_varSys_solverData_type) :: methodData ! -------------------------------------------------------------------------- ! initialize variable system call tem_varSys_init( me = equation%varSys, systemName = 'maxwell_2d' ) allocate(equation%stateVar(4)) ! Append conservative Variables to variable system call atl_append_maxwell_2d_vars( equation, methodData ) equation%hasPrimitiveVariables = .false. ! Set values fro allocating temp flux arrays equation%temp%overSamp = 1 equation%temp%modal = 0 equation%temp%nodal = 2 equation%temp%nScal = equation%varsys%nScalars end subroutine atl_init_maxwell_2d_vars ! ****************************************************************************** ! ****************************************************************************** !> summary: append the variables for electrodynamic simulations subroutine atl_append_maxwell_2d_vars(equation, methodData) ! -------------------------------------------------------------------------- !> The equation system type(atl_equations_type), intent(inout) :: equation !> the pointer to the data required for the varsys type(atl_varSys_solverData_type), target :: methodData procedure(tem_varSys_proc_point), pointer :: get_point => NULL() procedure(tem_varSys_proc_element), pointer :: get_element => NULL() procedure(tem_varSys_proc_setparams), pointer :: set_params => NULL() procedure(tem_varSys_proc_getparams), pointer :: get_params => NULL() procedure(tem_varSys_proc_setupIndices), pointer :: setup_indices => NULL() procedure(tem_varSys_proc_getValOfIndex), pointer & & :: get_valOfIndex => NULL() ! -------------------------------------------------------------------------- get_element => atl_varSys_getStateForElement get_point => atl_varSys_getStateForPoint set_params => null() get_params => null() setup_indices => null() get_valOfIndex => null() call tem_varSys_append_stateVar( & & me = equation%varSys, & & varName = 'displacement_field', & & nComponents = 2, & & method_data = atl_get_new_varSys_data_ptr(methodData), & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = equation%stateVar(1) ) call tem_varSys_append_stateVar( & & me = equation%varSys, & & varName = 'magnetic_field', & & nComponents = 1, & & method_data = atl_get_new_varSys_data_ptr(methodData), & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = equation%stateVar(2) ) call tem_varSys_append_stateVar( & & me = equation%varSys, & & varName = 'pml_P', & & nComponents = 2, & & method_data = atl_get_new_varSys_data_ptr(methodData), & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = equation%stateVar(3) ) call tem_varSys_append_stateVar( & & me = equation%varSys, & & varName = 'pml_Q', & & nComponents = 2, & & method_data = atl_get_new_varSys_data_ptr(methodData), & & get_point = get_point, & & get_element = get_element, & & set_params = set_params, & & get_params = get_params, & & setup_indices = setup_indices, & & get_valOfIndex = get_valOfIndex, & & pos = equation%stateVar(4) ) end subroutine atl_append_maxwell_2d_vars ! ****************************************************************************** ! ****************************************************************************** subroutine eval_currentDensity_2d(rhs, source, state, constants) ! -------------------------------------------------------------------------- !> The Right Hand side to be updated real(kind=rk), intent(inout) :: rhs(:,:) !> The source data to be used real(kind=rk), intent(in) :: source(:,:) !> The state in the modal form real(kind=rk), intent(in) :: state(:,:) !> the constants required for the evaluation of source real(kind = rk ), intent(in) :: constants(:) ! -------------------------------------------------------------------------- rhs = 0.0_rk ! Compute RHS using the nodal values of source and state ! current density is relevant in Ampere's law: rhs(:,1:2) = - source(:,1:2) end subroutine eval_currentDensity_2d ! ****************************************************************************** ! ****************************************************************************** !> summary: evaluate "currentDensity" source subroutine atl_eval_source_currentDensity_2d( fun, varSys, time, mesh, & & poly_proj, currentLevel, & & state, material, sourcedata ) !--------------------------------------------------------------------------- !> Description of method to update source class(atl_source_op_type), intent(in) :: fun !> variable system type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Current level mesh information type(atl_cube_elem_type), intent(in) :: mesh !> Parameters for projection type(ply_poly_project_type), intent(inout) :: poly_proj !> current level integer, intent(in) :: currentLevel !> The state in modal space. !! This is needed for several source terms that have to be applied to the !! current state real(kind=rk), intent(in) :: state(:,:,:) !> Material description for the complete domain. Used for evaluation of some !! source terms. real(kind=rk), intent(in) :: material(:) !> The source data to update. When all source terms are added to this !! buffer, it is applied to the state. real(kind=rk), intent(inout) :: sourcedata(:,:,:) ! -------------------------------------------------------------------------- procedure(atl_compute_source_interface) , pointer:: evaluate_source ! -------------------------------------------------------------------------- ! Set the function pointer for the evaluation of spongeLayer_2d evaluate_source => eval_currentDensity_2d ! Call the common function for updating the sourceData call atl_equation_evaluate_source_modal( & & fun = fun, & & varSys = varSys, & & currentLevel = currentLevel, & & nDim = 2, & & time = time, & & eval_rhs = evaluate_source, & & state = state, & & poly_proj = poly_proj, & & polyProjBody = poly_proj%body_2d, & & sourceData = sourceData ) end subroutine atl_eval_source_currentDensity_2d ! ****************************************************************************** ! ****************************************************************************** subroutine eval_pml_2d(rhs, source, state, constants) ! -------------------------------------------------------------------------- !> The Right Hand side to be updated real(kind=rk), intent(inout) :: rhs(:,:) !> The source data to be used real(kind=rk), intent(in) :: source(:,:) !> The state in the modal form real(kind=rk), intent(in) :: state(:,:) !> the constants required for the evaluation of source real(kind = rk ), intent(in) :: constants(:) ! -------------------------------------------------------------------------- real(kind=rk) :: permittivity, permeability ! -------------------------------------------------------------------------- rhs = 0.0_rk permeability = constants(1) permittivity = constants(2) ! Compute RHS using the nodal values of source and state ! ... pml for d_t D_x = ... ! - 2 kappa_2 (1/sqrt(eps mu)) D_1 - kappa_2 sqrt(eps/mu) P_2 RHS(:,1) = RHS(:,1) & & - 2.0_rk * source(:,2) * state(:,1) & & / sqrt(permittivity * permeability) & & - source(:,2) * sqrt(permittivity / permeability) * state(:,5) ! ... pml for d_t D_y = ... ! - 2 kappa_1 (1/sqrt(eps mu)) D_2 - kappa_1 sqrt(eps/mu) P_1 RHS(:,2) = RHS(:,2) & & - 2.0_rk * source(:,1) * state(:,2) & & / sqrt(permittivity * permeability) & & - source(:,1) * sqrt(permittivity / permeability) * state(:,4) ! ... pml for d_t B_z = ... + (d_x kappa_1) Q_1 - (d_y kappa_2) Q_2 RHS(:,3) = RHS(:,3) + source(:,3)*state(:,6) - source(:,4)*state(:,7) ! ... pml for d_t P_1 = ... + kappa_1 * (1/sqrt(eps mu)) * (D_2/eps) RHS(:,4) = RHS(:,4) & & + source(:,1) * (1 / sqrt(permittivity * permeability)) & & * (state(:,2)/permittivity) ! ... pml for d_t P_2 = ... + kappa_2 * (1/sqrt(eps mu)) * (D_1/eps) RHS(:,5) = RHS(:,5) & & + source(:,2) * (1 / sqrt(permittivity * permeability)) & & * (state(:,1) / permittivity) ! ... pml for d_t Q_1 = ... ! - kappa_1 * (1/sqrt(eps mu)) * Q_1 - (1/sqrt(eps mu)) * (D_2/eps) RHS(:,6) = RHS(:,6) & & - source(:,1) * (1 / sqrt(permittivity * permeability)) * state(:,6) & & - (1 / sqrt(permittivity * permeability)) * (state(:,2) / permittivity) ! ... pml for d_t Q_2 = ... ! - kappa_2 * (1/sqrt(eps mu)) * Q_2 - (1/sqrt(eps mu)) * (D_1/eps) RHS(:,7) = RHS(:,7) & & - source(:,2) * (1 / sqrt(permittivity * permeability)) * state(:,7) & & - (1 / sqrt(permittivity * permeability)) * (state(:,1) / permittivity) end subroutine eval_pml_2d ! ****************************************************************************** ! ****************************************************************************** !> summary: evaluate "pml" source (uniaxial PML) subroutine eval_source_pml_2d( fun, varSys, time, mesh, poly_proj, & & currentLevel, state, material, sourcedata ) !--------------------------------------------------------------------------- !> Description of method to update source class(atl_source_op_type), intent(in) :: fun !> variable system type(tem_varSys_type), intent(in) :: varSys !> Point in time at which to evaluate the variable. type(tem_time_type), intent(in) :: time !> Current level mesh information type(atl_cube_elem_type), intent(in) :: mesh !> Parameters for projection type(ply_poly_project_type), intent(inout) :: poly_proj !> current level integer, intent(in) :: currentLevel !> The state in modal space. !! This is needed for several source terms that have to be applied to the !! current state real(kind=rk), intent(in) :: state(:,:,:) !> Material description for the complete domain. Used for evaluation of some !! source terms. real(kind=rk), intent(in) :: material(:) !> The source data to update. When all source terms are added to this !! buffer, it is applied to the state. real(kind=rk), intent(inout) :: sourcedata(:,:,:) ! -------------------------------------------------------------------------- procedure(atl_compute_source_interface) , pointer:: evaluate_source ! -------------------------------------------------------------------------- ! Set the function pointer for the evaluation of spongeLayer_2d evaluate_source => eval_pml_2d ! Call the common function for updating the sourceData call atl_equation_evaluate_source_nodal( & & fun = fun, & & varSys = varSys, & & currentLevel = currentLevel, & & nDim = 2, & & time = time, & & eval_rhs = evaluate_source, & & state = state, & & poly_proj = poly_proj, & & polyProjBody = poly_proj%body_2d, & & consts = material, & & sourceData = sourceData ) end subroutine eval_source_pml_2d ! ****************************************************************************** ! ****************************************************************************** !> summary: init source terms for electrodynamic simulations. subroutine atl_init_maxwell_2d_sourceTerms(possVars, eval_source) ! -------------------------------------------------------------------------- type(tem_possible_variable_type), intent(out) :: possVars type(atl_eqn_sourceMap_type), allocatable, intent(out) :: eval_source(:) ! -------------------------------------------------------------------------- integer :: pos ! -------------------------------------------------------------------------- allocate(eval_source(2)) call init(me = possVars, length = 2) ! ... current density call append( me = possVars, & & varName = 'current_density', & & nComponents = 2, & & pos = pos ) eval_source(pos)%do => atl_eval_source_currentDensity_2d ! ... pml layer (returns 2-vector with normal-projection onto ! the starting plane of the PML and the derivative of the first entry ! with regards to x and the derivative of the second entry with regards ! to y. call append( me = possVars, & & varName = 'pml', & & nComponents = 4, & & pos = pos ) eval_source(pos)%do => eval_source_pml_2d end subroutine atl_init_maxwell_2d_sourceTerms ! ****************************************************************************** end module atl_eqn_maxwell_2d_var_module