atl_rktaylor_module.f90 Source File


This file depends on

sourcefile~~atl_rktaylor_module.f90~~EfferentGraph sourcefile~atl_rktaylor_module.f90 atl_rktaylor_module.f90 sourcefile~atl_bc_header_module.f90 atl_bc_header_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_bc_header_module.f90 sourcefile~atl_boundary_module.f90 atl_boundary_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_boundary_module.f90 sourcefile~atl_compute_module.f90 atl_compute_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_compute_module.f90 sourcefile~atl_cube_container_module.f90 atl_cube_container_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_cube_container_module.f90 sourcefile~atl_cube_elem_module.f90 atl_cube_elem_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_cube_elem_module.f90 sourcefile~atl_elemental_time_integration_module.f90 atl_elemental_time_integration_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_elemental_time_integration_module.f90 sourcefile~atl_equation_module.f90 atl_equation_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_equation_module.f90 sourcefile~atl_facedata_module.f90 atl_facedata_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_facedata_module.f90 sourcefile~atl_kerneldata_module.f90 atl_kerneldata_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_kerneldata_module.f90 sourcefile~atl_materialprp_module.f90 atl_materialPrp_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_materialprp_module.f90 sourcefile~atl_penalization_module.f90 atl_penalization_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_penalization_module.f90 sourcefile~atl_scheme_module.f90 atl_scheme_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_scheme_module.f90 sourcefile~atl_source_types_module.f90 atl_source_types_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_source_types_module.f90 sourcefile~atl_stabilize_module.f90 atl_stabilize_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_stabilize_module.f90 sourcefile~atl_time_integration_module.f90 atl_time_integration_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_time_integration_module.f90 sourcefile~atl_writeprecice_module.f90 atl_writePrecice_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~atl_writeprecice_module.f90 sourcefile~ply_poly_project_module.f90 ply_poly_project_module.f90 sourcefile~atl_rktaylor_module.f90->sourcefile~ply_poly_project_module.f90

Files dependent on this one

sourcefile~~atl_rktaylor_module.f90~~AfferentGraph sourcefile~atl_rktaylor_module.f90 atl_rktaylor_module.f90 sourcefile~atl_global_time_integration_module.f90 atl_global_time_integration_module.f90 sourcefile~atl_global_time_integration_module.f90->sourcefile~atl_rktaylor_module.f90 sourcefile~atl_container_module.f90 atl_container_module.f90 sourcefile~atl_container_module.f90->sourcefile~atl_global_time_integration_module.f90 sourcefile~atl_program_module.f90 atl_program_module.f90 sourcefile~atl_program_module.f90->sourcefile~atl_global_time_integration_module.f90 sourcefile~atl_program_module.f90->sourcefile~atl_container_module.f90 sourcefile~atl_initialize_module.f90 atl_initialize_module.f90 sourcefile~atl_program_module.f90->sourcefile~atl_initialize_module.f90 sourcefile~ateles.f90 ateles.f90 sourcefile~ateles.f90->sourcefile~atl_container_module.f90 sourcefile~ateles.f90->sourcefile~atl_program_module.f90 sourcefile~atl_harvesting.f90 atl_harvesting.f90 sourcefile~atl_harvesting.f90->sourcefile~atl_container_module.f90 sourcefile~atl_harvesting.f90->sourcefile~atl_program_module.f90 sourcefile~atl_harvesting.f90->sourcefile~atl_initialize_module.f90 sourcefile~atl_initialize_module.f90->sourcefile~atl_container_module.f90

Source Code

! Copyright (c) 2014 Jens Zudrop <j.zudrop@grs-sim.de>
! Copyright (c) 2014-2016 Nikhil Anand <nikhil.anand@uni-siegen.de>
! Copyright (c) 2014-2017, 2019 Peter Vitt <peter.vitt2@uni-siegen.de>
! Copyright (c) 2014, 2016, 2018 Harald Klimach <harald.klimach@uni-siegen.de>
! Copyright (c) 2015-2016 Verena Krupp <verena.krupp@uni-siegen.de>
! Copyright (c) 2016 Parid Ndreka
! Copyright (c) 2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de>
! Copyright (c) 2016 Tobias Girresser <tobias.girresser@student.uni-siegen.de>
! Copyright (c) 2017 Daniel PetrĂ³ <daniel.petro@student.uni-siegen.de>
! Copyright (c) 2017 Jiaxing Qi <jiaxing.qi@uni-siegen.de>
! Copyright (c) 2018 Neda Ebrahimi Pour <neda.epour@uni-siegen.de>
!
! Permission to use, copy, modify, and distribute this software for any
! purpose with or without fee is hereby granted, provided that the above
! copyright notice and this permission notice appear in all copies.
!
! THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
! WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
! MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
! ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
! WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
! ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
! OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
! **************************************************************************** !

!> author: Jens Zudrop
!!
!! Routines,functions, datatypes related to Runge Kutta Taylor methods
!! for arbitrary high order time stepping.
!!
!! Implementation is based on:
!! Claudio G Canuto and M. Yousuff Hussaini and Alfio Quarteroni and Thomas A. Zang
!! 2nd Edition, page 534, equation D.2.18, section D.2.5 Runge-Kutta Methods
!! ATTENTION:
!! In case that the right hand side of the PDE does not contain any explicit temporal
!! dependence the method is high order accurate, i.e. s-stages yield a RK method
!! of order s.
module atl_rktaylor_module
  use env_module,               only: rk
  use tem_aux_module,           only: tem_abort
  use tem_element_module,       only: eT_fluid
  use tem_general_module,       only: tem_general_type
  use tem_logging_module,       only: logUnit
  use treelmesh_module,         only: treelmesh_type
  use tem_precice_module,       only: precice_available

  use atl_compute_module,           only: atl_compute_rhs,    &
    &                                     atl_preprocess_rhs, &
    &                                     atl_postprocess_rhs
  use atl_elemental_time_integration_module, only: atl_timestep_type
  use atl_cube_elem_module,         only: atl_cube_elem_type
  use atl_kerneldata_module,        only: atl_kerneldata_type, atl_statedata_type
  use atl_scheme_module,            only: atl_scheme_type, &
    &                                     atl_local_timestep_type
  use atl_source_types_module,      only: atl_source_type
  use atl_boundary_module,          only: atl_level_boundary_type
  use atl_facedata_module,          only: atl_facedata_type
  use atl_time_integration_module,  only: atl_global_timestep_type
  use atl_equation_module,      only: atl_equations_type
  use atl_bc_header_module,     only: atl_boundary_type
  use atl_stabilize_module,     only: atl_stabilize
  use ply_poly_project_module,  only: ply_poly_project_type, assignment(=)
  use atl_materialPrp_module,   only: atl_material_type
  use atl_writePrecice_module,  only: atl_write_precice
  use atl_cube_container_module, only: atl_cube_container_type
  use atl_penalization_module,  only: atl_penalizationData_type

  implicit none
  private

  public :: atl_init_explicitRungeKuttaTaylor

contains

  !> Routine to initialize explicit runge kutta taylor scheme for timestepping.
  subroutine atl_init_explicitRungeKuttaTaylor( me, minLevel, maxLevel, steps, &
    &                                           statedata_list                 )
    ! --------------------------------------------------------------------------
    !> The datatype to initialize.
    type(atl_global_timestep_type), intent(inout) :: me

    !> The minimum of level of the mesh.
    integer, intent(in) :: minLevel

    !> The maximum of level of the mesh.
    integer, intent(in) :: maxLevel

    !> The number of steps in the runge kutta procedure
    integer, intent(in) :: steps

    !> The state list used in your solver, for each level one entry.
    type(atl_statedata_type) , intent(in) :: statedata_list(minLevel:maxLevel)
    ! --------------------------------------------------------------------------
    integer :: iLevel, iStep
    ! --------------------------------------------------------------------------
    ! point to euler step function, we dont have to allocate any of the
    ! additional arrays for coefficients or buffering.
    allocate( me%elementSteps(minLevel:maxLevel) )
    if (steps > 0 ) then
      do iLevel = minLevel, maxLevel
        if(allocated(statedata_list(iLevel)%state)) then
          ! We store one integer, indicating (inside the elemental operation) in which
          ! step we are.
          allocate(me%elementSteps(iLevel)%timestepInfoInteger(1))
          ! In a Rk-Taylor method we only store one intermediate result
          allocate(me%elementSteps(iLevel)%timestepData(1))
          do iStep = 1, 1
            allocate(me%elementSteps(iLevel)%timestepData(iStep) &
              &         %state(size(statedata_list(iLevel)%state, 1), &
              &                size(statedata_list(iLevel)%state, 2), &
              &                size(statedata_list(iLevel)%state, 3)) &
              &     )
          end do
          me%elementSteps(iLevel)%elemStep => elemental_timestep_rktaylor
          me%elementSteps(iLevel)%elemStep_vec => elemental_timestep_vec_rktaylor
          me%elementSteps(iLevel)%updateStep => update_timestep_rktaylor
        end if
      end do
      me%meshStep => mesh_timestep_rktaylor
    else
      write(logUnit(1),*) 'init runge kutta taylor method for this number of steps not' &
        &            //' implemented, stopping...'
      call tem_abort()
    end if
  end subroutine atl_init_explicitRungeKuttaTaylor




  !> Levelwise updating of runge kutta taylor method
  subroutine update_timestep_rktaylor( me, timestepInfo )
    ! ------------------------------------------------------------------------
    !> The type of your timestepping.
    class(atl_timestep_type), intent(inout) :: me

    !> Local timestepping information for that part of the mesh
    type(atl_local_timestep_type), intent(in) :: timestepInfo
    ! ------------------------------------------------------------------------
    ! ------------------------------------------------------------------------
    ! nothing to be done here.
  end subroutine update_timestep_rktaylor




  !> Elemental operation for timestepping of type Runge Kutta Taylor
  subroutine elemental_timestep_rktaylor( me, state, cell, dof, sideFlux)
    ! ------------------------------------------------------------------------
    !> Description of the timestep integration method.
    class(atl_timestep_type), intent(inout) :: me

    !> The state of all cells on this level. This field will be updated
    !! ad the cell position. See kerneldata type for more explanations.
    real(kind=rk), intent(inout) :: state(:,:,:)

    !> Position of the cell to update in the state vector.
    integer,intent(in) :: cell

    !> The degree of freedom to update
    integer, intent(in) :: dof

    !> The flux for one of the sides of this cell. The length of this array
    !! is the number of conservative variables of your equation.
    real(kind=rk), intent(in) :: sideFlux(:)
    ! ------------------------------------------------------------------------
    me%timestepData(me%timestepInfoInteger(1))%state(cell,dof,:) &
      & = me%timestepData(me%timestepInfoInteger(1))%state(cell,dof,:) &
      & + sideFlux(:)
  end subroutine elemental_timestep_rktaylor


  !> Elemental operation for timestepping of type Runge Kutta Taylor
  subroutine elemental_timestep_vec_rktaylor( me, state, kerneldata)
    ! ------------------------------------------------------------------------
    !> Description of the timestep integration method.
    class(atl_timestep_type), intent(inout) :: me

    !> The state of all cells on this level. This field will be updated
    !! ad the cell position. See kerneldata type for more explanations.
    real(kind=rk), intent(inout) :: state(:,:,:)

    !> Complete kerneldata to get the flux from with additional information.
    type(atl_kerneldata_type), intent(in) :: kerneldata
    ! ------------------------------------------------------------------------

    call compute(kerneldata%nTotal, kerneldata%nDofs, kerneldata%nVars,  &
      &          me%timestepData(me%timestepInfoInteger(1))%state, &
      &          kerneldata%state_der)

  contains

    ! put it in an own subroutine to allow vectorization with gcc
    subroutine compute(nTotal, nDofs, nScalars, &
        &              state, state_der)
      ! ------------------------------------------------------------------------
      integer, intent(in) :: nTotal, nDofs, nScalars
      real(kind=rk), intent(inout) :: state(nTotal, nDofs, nScalars)
      real(kind=rk), intent(in) :: state_der(:,:,:)
      ! ------------------------------------------------------------------------

      state(:nTotal,:,:) = state(:nTotal,:,:) + state_der(:nTotal,:nDofs,:)

    end subroutine compute

  end subroutine elemental_timestep_vec_rktaylor


  !> Subroutine for timestepping with explicit runge kutta taylor
  subroutine mesh_timestep_rktaylor(minLevel, maxLevel, currentLevel, cubes, &
    &                               tree, timestep_list, nSteps, equation,   &
    &                               general,commStateTimer,                  &
    &                               poly_proj_list                           )
    ! --------------------------------------------------------------------------
    !> The minimum refinement level of the mesh.
    integer, intent(in)           :: minLevel

    !> The maximum refinement level of the mesh.
    integer, intent(in)           :: maxLevel

    !> The level the timestep has to be performed for.
    integer, intent(in)           :: currentLevel

    !> Container for the cubical elements.
    type(atl_cube_container_type), intent(inout) :: cubes

    !> treelm mesh
    type(treelmesh_type), intent(in) :: tree

    !> List of levelwise timestepping algorihtms
    type(atl_timestep_type), intent(inout) :: timestep_list(minLevel:)

    !> The number of steps of the time stepping scheme
    integer, intent(in) :: nSteps

    !> The equation you are operating with.
    type(atl_equations_type),intent(inout) :: equation

    !> General treelm settings
    type(tem_general_type), intent(inout) :: general

    !> Timer for measuring the communication time inside this routine.
    integer,intent(inout) :: commStateTimer

    !> unique list for projection methods
    type(ply_poly_project_type), intent(inout) :: poly_proj_list(:)
    ! --------------------------------------------------------------------------
    integer :: iLevel, iStep
    type(atl_statedata_type) :: statedata_list_temp(minLevel:maxLevel)
    ! --------------------------------------------------------------------------

    ! Init arrays for intermediate results
    do iLevel = minLevel, maxLevel
      allocate( statedata_list_temp(iLevel)       &
        &         %state( cubes%mesh_list(iLevel) &
        &                      %descriptor        &
        &                      %elem              &
        &                      %nElems(eT_fluid), &
        &       cubes%scheme_list(iLevel)         &
        &            %nDofs,                      &
        &       equation%varSys                   &
        &               %nScalars)                )
      statedata_list_temp(iLevel)%state = cubes%statedata_list(iLevel)%state
    end do

    do iStep = nSteps, 1, -1

      ! 1st runge kutta substep. Will call itself on the finer
      ! levels recursively.
      do iLevel = minLevel, maxLevel
        ! Store, that we are in the first step of the RK method.
        timestep_list(iLevel)%timestepInfoInteger(1) = 1
        timestep_list(iLevel)%timestepData(1)%state = 0.0_rk
      end do
      call rktaylor_substep(                                   &
        & minLevel              = minLevel,                    &
        & maxLevel              = maxLevel,                    &
        & currentLevel          = currentLevel,                &
        & mesh_list             = cubes%mesh_list,             &
        & tree                  = tree,                        &
        & levelPointer          = cubes%levelPointer,          &
        & kerneldata_list       = cubes%kerneldata_list,       &
        & statedata_list        = statedata_list_temp,         &
        & facedata_list         = cubes%facedata_list,         &
        & source                = cubes%source,                &
        & penalizationdata_list = cubes%penalizationdata_list, &
        & boundary_list         = cubes%boundary_list,         &
        & bc                    = cubes%bc,                    &
        & scheme_list           = cubes%scheme_list,           &
        & poly_proj_pos         = cubes%poly_proj_pos,         &
        & poly_proj_list        = poly_proj_list,              &
        & timestep_list         = timestep_list,               &
        & equation              = equation,                    &
        & material_list         = cubes%material_list,         &
        & general               = general,                     &
        & commStateTimer        = commStateTimer               )

      ! Now, build the intermediate values for the RK4 method. Since the substep
      ! was carried out for all the levels in the previous step, we can continue
      ! in a simple loop over the levels.
      do iLevel = minLevel, maxLevel
        call compute_intermediate(                                 &
          &    nTotal    = cubes%mesh_list(iLevel)                 &
          &                     %descriptor%elem%nElems(eT_fluid), &
          &    nDofs     = cubes%scheme_list(iLevel)               &
          &                     %nDofs,                            &
          &    nScalars  = equation%varSys                         &
          &                        %nScalars,                      &
          &    state_tmp = statedata_list_temp(iLevel)             &
          &                  %state,                               &
          &    state1    = cubes%statedata_list(iLevel)            &
          &                     %state,                            &
          &    state2    = timestep_list(iLevel)%timestepData(1)   &
          &                                     %state,            &
          &    factor    = (1.0_rk/real(iStep,rk))                 &
          &                * cubes%scheme_list(iLevel)%time%dt     )
      end do
      ! Stabilize the intermediate result of this stage of the RK4 scheme
      call atl_stabilize( minlevel = minlevel, maxlevel = maxlevel, &
                        & statedata_list = statedata_list_temp,     &
                        & statedata_stab_list = cubes%statedata_stab_list,&
                        & mesh_list = cubes%mesh_list,              &
                        & scheme_list = cubes%scheme_list,          &
                        & equation = equation,                      &
                        & tree = tree,                              &
                        & poly_proj_pos = cubes%poly_proj_pos,      &
                        & poly_proj_list= poly_proj_list,           &
                        & general = general,                        &
                        & bc = cubes%bc,                            &
                        & boundary = cubes%boundary_stab_list,      &
                        & material_list= cubes%material_list,       &
                        & commStateTimer = commStateTimer           )
    end do


    ! The final update step. No need to have a recusrive structure here,
    ! so, we can do it in parallel for the different levels.
    do iLevel = minLevel, maxLevel
      call rktaylor_update(cubes%statedata_list(iLevel), &
        & statedata_list_temp(iLevel))
    end do


    ! Stabilize the final result
    call atl_stabilize( minlevel = minlevel, maxlevel = maxlevel, &
                      & statedata_list = cubes%statedata_list,    &
                      & statedata_stab_list = cubes%statedata_stab_list,&
                      & mesh_list = cubes%mesh_list,              &
                      & scheme_list = cubes%scheme_list,          &
                      & equation = equation ,                     &
                      & tree = tree,                              &
                      & poly_proj_pos= cubes%poly_proj_pos,       &
                      & poly_proj_list = poly_proj_list,          &
                      & bc = cubes%bc,                            &
                      & boundary = cubes%boundary_stab_list,      &
                      & general = general,                        &
                      & material_list= cubes%material_list,       &
                      & commStateTimer = commStateTimer           )

    ! After the runge kutta FULL step, write the results to precice
    if (precice_available) then
      call atl_write_precice( stFunList = equation%stFunList,     &
        &                     varSys    = equation%varSys,        &
        &                     time      = general%simControl%now, &
        &                     tree      = tree                    )
    end if

  contains

    ! own subroutine to allow vectorization with gcc
    subroutine compute_intermediate(nTotal, nDofs, nScalars, &
        &                           state_tmp, state1, state2, &
        &                           factor)
      ! ---------------------------------------------------------------------------
      integer, intent(in) :: nTotal, nDofs, nScalars
      real(kind=rk), intent(out) :: state_tmp(nTotal, nDofs, nScalars)
      real(kind=rk), intent(in) :: state1(nTotal, nDofs, nScalars)
      real(kind=rk), intent(in) :: state2(nTotal, nDofs, nScalars)
      real(kind=rk), intent(in) :: factor
      ! ---------------------------------------------------------------------------

      state_tmp = state1 + factor*state2

    end subroutine compute_intermediate

  end subroutine mesh_timestep_rktaylor


  !> Subroutine calculates the final update step of the Runge-Kutta Taylor method.
  !! It is performing levelwise.
  subroutine rktaylor_update( statedata_list, statedata_list_temp )
    ! ---------------------------------------------------------------------------
    !> List of states you want to calc the rhs for. For each level we have one.
    type(atl_statedata_type), intent(inout) :: statedata_list
    !> List of levelwise timestepping algorihtms
    type(atl_statedata_type), intent(inout) :: statedata_list_temp
    ! ---------------------------------------------------------------------------
    integer :: nTotal, nDofs, nScalars
    ! ---------------------------------------------------------------------------

    nTotal = size(statedata_list%state, 1)
    nDofs = size(statedata_list%state, 2)
    nScalars = size(statedata_list%state, 3)
    call compute(nTotal, nDofs, nScalars, &
      &          statedata_list%state, &
      &          statedata_list_temp%state)

  contains

   ! own subroutine to allow vectorization with gcc
   subroutine compute(nTotal, nDofs, nScalars, &
       &              state, state_temp)
     ! ---------------------------------------------------------------------------
     integer, intent(in) :: nTotal, nDofs, nScalars
     real(kind=rk), intent(inout) :: state(nTotal, nDofs, nScalars)
     real(kind=rk), intent(in) :: state_temp(nTotal, nDofs, nScalars)
     ! ---------------------------------------------------------------------------

     state = state_temp

   end subroutine compute

  end subroutine rktaylor_update


  !> Subroutine calculates a substep of the Runge-Kutta-Taylor timestepping scheme.
  !! Calls itself recursively for the finer levels until the finest level is reached.
  recursive subroutine rktaylor_substep(minLevel, maxLevel, currentLevel,  &
    & mesh_list, tree, levelPointer, kerneldata_list, statedata_list,      &
    & facedata_list, source, penalizationdata_list, boundary_list, bc,     &
    & scheme_list, poly_proj_pos, poly_proj_list, timestep_list, equation, &
    & material_list, general, commStateTimer                               )
    ! ---------------------------------------------------------------------------
    !> The minimum refinement level of the mesh.
    integer, intent(in) :: minLevel
    !> The maximum refinement level of the mesh.
    integer, intent(in) :: maxLevel
    !> The level the timestep has to be performed for.
    integer, intent(in) :: currentLevel
    !> List of mesh parts. For each level we have one.
    type(atl_cube_elem_type), intent(inout) :: mesh_list(minLevel:maxLevel)
    !> treelm mesh
    type(treelmesh_type), intent(in) :: tree
    !> Pointer for elements from global treeID list index to index in
    !! levelwise fluid lists
    integer, intent(in)  :: levelPointer(:)
    !> List of kerneldatas. For each level we have one
    type(atl_kerneldata_type), intent(inout) :: kerneldata_list(minLevel:maxLevel)
    !> List of states you want to calc the rhs for. For each level we have one.
    type(atl_statedata_type), intent(inout) :: statedata_list(minLevel:maxLevel)
    !> List of faces states you want to calc the rhs for. For each level we have one.
    type(atl_facedata_type), intent(inout) :: facedata_list(minLevel:maxLevel)
    !> List of sources, for each level
    type(atl_source_type), intent(inout) :: source
    !> List of penalization data, for each level.
    type(atl_penalizationData_type), intent(inout) &
      & :: penalizationdata_list(minLevel:maxLevel)
    !> List of boundaries, for each level.
    type(atl_level_boundary_type), intent(inout) :: &
      & boundary_list(minLevel:maxLevel)
    !> Global description of the boundaries
    type(atl_boundary_type), intent(in) :: bc(:)
    !> List of schemes, for each level.
    type(atl_scheme_type), intent(inout) :: scheme_list(minLevel:maxLevel)
    !> List of position of projection method in unique projection list, for each
    !! level
    integer, intent(in) :: poly_proj_pos(minLevel:maxLevel)
    !> unique list for projection methods
    type(ply_poly_project_type), intent(inout) :: poly_proj_list(:)
    !> List of levelwise timestepping algorihtms
    type(atl_timestep_type), intent(inout) :: timestep_list(minLevel:maxLevel)
    !> The equation you are operating with.
    type(atl_equations_type), intent(inout) :: equation
    !> Material parameter description.
    type(atl_material_type), intent(inout) :: material_list(minlevel:maxlevel)
    !> General treelm settings
    type(tem_general_type), intent(inout) :: general
    !> Timer for measuring the communication time inside this routine.
    integer, intent(inout) :: commStateTimer
    ! ---------------------------------------------------------------------------

    ! Before going to the next finer level, we do the following:
    !(0. Create modal representation of source terms)
    ! 1. Project modal representation to the faces.
    ! 2. Communicate the face representations (only the current level).
    ! 3. Interpolate face representations from the current level to
    !    the next finer level.
    ! All these steps are done in the preprocess step of the compute module.
    call atl_preprocess_rhs( minLevel        = minLevel,        &
      &                      maxLevel        = maxLevel,        &
      &                      currentLevel    = currentLevel,    &
      &                      mesh_list       = mesh_list,       &
      &                      tree            = tree,            &
      &                      statedata_list  = statedata_list,  &
      &                      facedata_list   = facedata_list,   &
      &                      boundary_list   = boundary_list,   &
      &                      bc              = bc,              &
      &                      scheme_list     = scheme_list,     &
      &                      poly_proj_list  = poly_proj_list,  &
      &                      equation        = equation,        &
      &                      material_list   = material_list,   &
      &                      general         = general          )


    ! Now, we call the timestep for the next level. I.e. the timestepping
    ! for the finer levels is called recursively unitl we reached the
    ! finest level (i.e. maxLevel) of the mesh.
    if(currentLevel .lt. maxLevel) then
      call rktaylor_substep( minLevel              = minLevel,              &
        &                    maxLevel              = maxLevel,              &
        &                    currentLevel          = currentLevel + 1,      &
        &                    mesh_list             = mesh_list,             &
        &                    tree                  = tree,                  &
        &                    levelPointer          = levelPointer,          &
        &                    kerneldata_list       = kerneldata_list,       &
        &                    statedata_list        = statedata_list,        &
        &                    facedata_list         = facedata_list,         &
        &                    source                = source,                &
        &                    penalizationdata_list = penalizationdata_list, &
        &                    boundary_list         = boundary_list,         &
        &                    bc                    = bc,                    &
        &                    scheme_list           = scheme_list,           &
        &                    poly_proj_pos         = poly_proj_pos,         &
        &                    poly_proj_list        = poly_proj_list,        &
        &                    timestep_list         = timestep_list,         &
        &                    equation              = equation,              &
        &                    material_list         = material_list,         &
        &                    general               = general,               &
        &                    commStateTimer        = commStateTimer         )
    end if

    ! After making the timestep on the finer level, we do the following:
    ! 1. Interpolate flux from finer level to the current level.
    ! 2. Calculate the fluxes for the current level.
    ! 3. Communicate the fluxes (only the current level).
    ! 4. Calculate the physical fluxes.
    ! 5. Project physical flux + numerical fluxes to test functions.
    ! 6. Multiply with inverse of (cell local) mass matrix.
    ! ... this call includes steps 1 to 5.
    call atl_compute_rhs( minLevel, maxLevel, currentLevel, mesh_list, tree, &
      & kerneldata_list, statedata_list, facedata_list, source,              &
      & penalizationdata_list, scheme_list, poly_proj_pos,poly_proj_list,    &
      & equation, material_list, general                                     )
    ! ... this call applies the inverse of the mass matrix.
      call atl_postprocess_rhs( mesh       = mesh_list(currentLevel),       &
        &                       kerneldata = kerneldata_list(currentLevel), &
        &                       statedata  = statedata_list(currentLevel),  &
        &                       scheme     = scheme_list(currentLevel),     &
        &                       timestep   = timestep_list(currentLevel),   &
        &                       equation   = equation                       )

  end subroutine rktaylor_substep

end module atl_rktaylor_module