! Copyright (c) 2014 Verena Krupp ! Copyright (c) 2014, 2022 Harald Klimach <harald.klimach@dlr.de> ! Copyright (c) 2017 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2019 Neda Ebrahimi Pour <neda.epour@uni-siegen.de> ! ! Parts of this file were written by Verena Krupp, Harald Klimach, Peter Vitt ! and Neda Ebrahimi Pour for University of Siegen. ! ! Permission to use, copy, modify, and distribute this software for any ! purpose with or without fee is hereby granted, provided that the above ! copyright notice and this permission notice appear in all copies. ! ! THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES ! WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ! ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES ! WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ! ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF ! OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ! **************************************************************************** ! ! Copyright (c) 2012-2013 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2012 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2012-2016 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2012, 2015-2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2013 Daniel Harlacher <d.harlacher@grs-sim.de> ! Copyright (c) 2014 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2014 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2015-2017 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2015-2016 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Daniel Fleischer <daniel.fleischer@student.uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2017 Daniel PetrĂ³ <daniel.petro@student.uni-siegen.de> ! ! Parts of this file were written by Harald Klimach, Simon Zimny and Manuel ! Hasert for German Research School for Simulation Sciences GmbH. ! ! Parts of this file were written by Harald Klimach, Kannan Masilamani, ! Daniel Harlacher, Kartik Jain, Verena Krupp, Jiaxing Qi, Peter Vitt, ! Daniel Fleischer, Tobias Girresser and Daniel PetrĂ³ for University Siegen. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! This file contains the source code for growing and dynamic arrays. ! This is used for arrays of primitives (int, long_int, real, ...) as well as ! for arrays of derived datatypes (tem_variable_type,...). ! ! To use these macros include the following to your source file. ! ! Smart growing array (GA) for ?tstring? ! Growing Arrays: ! ! declaration ! ! ! implementation ! ! ----------------------------------------------------------------- ! 2d Array, which can grow in second dimension only (GA2d) ! tname ... indicates type of dynamic array (long, int, real, ...) ! !------------------------------------------------------------------------------ ! ! dynamic Arrays: ! ! declaration ! ! ! implementation ! !> Module providing datatypes and routines for a fast !! transformation of Legendre expansion to point values. module ply_dynarray_project_module use env_module, only: minLength, & & zeroLength use aotus_module, only: flu_State use tem_logging_module, only: logUnit use ply_prj_header_module implicit none private !> Projection definition. type ply_prj_init_type !> Polynomial basis type. !! !! 3D Monomials have the form x^i * y^j * z^k !! - Q_space: quadratic polynomial space (i,j,k) <= maxPolyDegree !! - P_space: polynomial space i+j+k <= maxPolyDegree integer :: basisType !> The maximal polynomial degree per spatial direction. integer :: maxPolyDegree !> projection header consits of general information like which kind !! of projection is used type(ply_prj_header_type) :: header end type ply_prj_init_type interface operator(==) module procedure isEqual end interface interface operator(/=) module procedure isUnequal end interface interface operator(<) module procedure isSmaller end interface interface operator(<=) module procedure isSmallerOrEqual end interface interface operator(>) module procedure isGreater end interface interface operator(>=) module procedure isGreaterOrEqual end interface interface assignment(=) module procedure Copy_ply_prj_init end interface ! \brief smart dynamic array (da) for type(ply_prj_init_type) ! ! this datatype implements a dynamic array, which is capable of ! growing and adding of unique elements. it is available for ! various types, here we deal with $tstring$. ! sorted array contains the pointers to val array, instead of ! the actual values in val array. for example: ! val: 8, 6, 7, 5 ! sorted: 4, 2, 3, 1 !> dynamic array (da) type for type(ply_prj_init_type) type dyn_projectionarray_type integer :: nvals = 0 integer :: containersize = 0 type(ply_prj_init_type), allocatable :: val(:) integer, allocatable :: sorted(:) !< pointers, not values end type !> initialize the dynamic array interface init module procedure init_da_projection end interface !> destroy the dynamic array interface destroy module procedure destroy_da_projection end interface !> append a value to the dynamic array !! and return its position. interface append module procedure append_da_projection module procedure append_da_vecprojection end interface !> truncate the array, meaning !! cut off the trailing empty entries interface truncate module procedure truncate_da_projection end interface !> empty the array, reset nvals to be 0 interface empty module procedure empty_da_projection end interface !> fix the dynamic array, meaning: !! store the array in the sorted order and cut !! off the trailing empty entries interface sorttruncate module procedure sorttruncate_da_projection end interface !> increase the size of the container !! for the array. interface expand module procedure expand_da_projection end interface !> return the position of a given value !! in the array val, which is what you usually want to know. !! it is the index of a given value interface positionofval module procedure posofval_projection end interface !> return the position of a given value !! in the list 'sorted'. this is mainly for internal usage. !! the sorted list is only a pointer list to the actual values !! thus, in order to get the index of a given value, you !! need to look up the entry in the sorted list. !! this is done by the positionofval routine interface sortedposofval module procedure sortposofval_projection end interface public :: init, append, dyn_projectionArray_type, truncate, empty public :: sortTruncate, positionOfVal public :: operator(==), operator(/=), operator(<), operator(<=) public :: operator(>), operator(>=) public :: ply_prj_init_define, ply_prj_init_type public :: ply_fill_dynProjectArray contains ! ***************************************************************************** ! !> initialization of a dynamic array !! !! before a dynamic array can be used, it has to be initialized !! with this routine. the initial length provided here, can !! avoid reallocations and memory copying, if approximated !! correctly enough. if none is specified, the provided container !! initially will be of size 0. subroutine init_da_projection(me, length) !----------------------------------------------------------------- type(dyn_projectionarray_type), intent(out) :: me !< dynamic array to init integer, intent(in), optional :: length !< initial length of the container !----------------------------------------------------------------- if (present(length)) then me%containersize = length else me%containersize = zerolength end if ! deallocate ... if( allocated( me%val ) ) deallocate(me%val) if( allocated( me%sorted ) ) deallocate(me%sorted) ! ... and reallocate allocate(me%val(me%containersize)) allocate(me%sorted(me%containersize)) me%nvals = 0 end subroutine init_da_projection !> destruction of a dynamic array !! !! this subroutine takes care of a proper destruction of a !! dynamic array, it frees the allocated memory and resets !! the internal counts to 0. subroutine destroy_da_projection(me) type(dyn_projectionarray_type), intent(inout) :: me !< dynamic array to init me%containersize = 0 me%nvals = 0 if( allocated( me%val ) ) deallocate(me%val) if( allocated( me%sorted ) ) deallocate(me%sorted) end subroutine destroy_da_projection ! ***************************************************************************** ! ! ***************************************************************************** ! !> appending a value to the dynamic array !! !! with this subroutine, a given value can be added to the !! dynamic array. the actual position of this value in the !! dynamic array will be returned, so it can be found again !! easily later. with the wasadded flag, it is indicated,\n !! wasadded = true, if this entry had to be added,\n !! wasadded = false, if this was already found in the array. subroutine append_da_projection(me, val, length, pos, wasadded ) !------------------------------------------------------------------------ type(dyn_projectionarray_type) :: me !< array to append the value to type(ply_prj_init_type), intent(in) :: val !< value to append !> optional length to expand the array integer, intent(in), optional :: length !> position in the array, if the value is found integer, intent(out), optional :: pos !> flag to indicate, if val was newly added logical, intent(out), optional :: wasadded !------------------------------------------------------------------------ integer :: foundpos integer :: i !------------------------------------------------------------------------ ! do a binary search on existing entries (returns closest entry next to ! it if not found). foundpos = sortedposofval(me, val, .true.) if( present( wasadded ) ) wasadded = .false. ! if it found the value, the position is smaller than nvals if (foundpos <= me%nvals) then ! the returned position might actually be the right entry already or ! not, check for this here. if ( me%val(me%sorted(foundpos)) == val ) then ! found the value in a list of unique values, ! nothing to do, just return its position. if( present( pos ) ) pos = me%sorted(foundpos) else ! need to append a new value! if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for dynamic array!" write(*,*) "aborting!!" stop end if if( present( wasadded ) ) wasadded = .true. if (me%nvals == me%containersize) then ! container is full, need to expand it call expand(me = me, length = length) end if me%nvals = me%nvals + 1 ! put the new value into the last position in the ! array. me%val(me%nvals) = val do while( foundpos < me%nvals ) if(me%val(me%sorted(foundpos)) /= val) then exit end if ! in case of multiple entries with the same value ! move on to the first differing entry. foundpos = foundpos + 1 end do ! shift the sorted list of indices, to create a ! whole for the value to be inserted, at position ! foundpos. do i=me%nvals-1,foundpos,-1 me%sorted(i+1) = me%sorted(i) end do ! put the index of the new value into the ! sorted list at the now freed position. me%sorted(foundpos) = me%nvals if( present( pos ) ) pos = me%nvals end if else ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if( present( wasadded ) ) wasadded = .true. if (foundpos > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, length = length) end if me%nvals = foundpos me%val(foundpos) = val me%sorted(foundpos) = foundpos if( present( pos ) ) pos = foundpos end if end subroutine append_da_projection ! ***************************************************************************** ! ! ***************************************************************************** ! !> appending a sorted list of values to the dynamic array !! !! with this subroutine, a given list of sorted values can be added to the !! dynamic array. the actual positions of these values in the !! dynamic array will be returned, so it can be found again !! easily later. with the wasadded flag, it is indicated,\n !! wasadded = true, if this entry had to be added,\n !! wasadded = false, if this was already found in the array. subroutine append_da_vecprojection(me, val, length, pos, wasadded ) !------------------------------------------------------------------------ type(dyn_projectionarray_type) :: me !< array to append the value to type(ply_prj_init_type), intent(in) :: val(:) !< values to append !> optional length to expand the array integer, intent(in), optional :: length !> position in the array, the values are found at. integer, intent(out), optional :: pos(:) !> flag to indicate, if val was newly added logical, intent(out), optional :: wasadded(:) !------------------------------------------------------------------------ type(ply_prj_init_type) :: lastval logical :: addedval(size(val)) integer :: i integer :: veclen integer :: maxlen integer :: nappend integer :: rem_app integer :: curval, ival, iold, iadd integer, allocatable :: newsorted(:) !------------------------------------------------------------------------ if (size(val) == 0) return veclen = size(val) maxlen = veclen + me%nvals allocate(newsorted(maxlen)) addedval = .false. iold = 1 iadd = 1 nappend = 0 curval = 0 ! select the first entry before the loop unconditionally without checks ! for uniqueness (nothing to check against yet). if ( me%val(me%sorted(iold)) <= val(iadd) ) then curval = curval + 1 newsorted(curval) = me%sorted(iold) lastval = me%val(me%sorted(iold)) iold = iold + 1 else curval = curval + 1 nappend = nappend + 1 newsorted(curval) = me%nvals + nappend lastval = val(iadd) if (present(pos)) pos(iadd) = newsorted(curval) addedval(iadd) = .true. iadd = iadd + 1 end if do ival=2,maxlen if ( (iadd <= veclen) .and. (iold <= me%nvals) ) then if ( me%val(me%sorted(iold)) <= val(iadd) ) then ! the original list's values are appended to newsorted before ! the additional list is appended. curval = curval + 1 newsorted(curval) = me%sorted(iold) lastval = me%val(me%sorted(iold)) iold = iold + 1 else ! only append the value to unique lists, if it is not yet in the list. ! (if it is already in the list, it has to be the previous (curval-1) ! entry.) if ( lastval < val(iadd) ) then nappend = nappend + 1 curval = curval + 1 newsorted(curval) = me%nvals + nappend lastval = val(iadd) addedval(iadd) = .true. end if if (present(pos)) pos(iadd) = newsorted(curval) iadd = iadd + 1 end if else ! reached the end of one or both of the sorted lists. exit end if end do if (iold <= me%nvals) then ! still some values from the original list left. newsorted(curval+1:me%nvals+nappend) = me%sorted(iold:me%nvals) end if if (iadd <= veclen) then ! still some values from the list to append left. rem_app = iadd do i = rem_app,veclen if ( lastval < val(iadd) ) then nappend = nappend + 1 curval = curval + 1 newsorted(curval) = me%nvals + nappend lastval = val(iadd) addedval(iadd) = .true. end if if (present(pos)) pos(iadd) = newsorted(curval) iadd = iadd + 1 end do end if if (me%nvals > huge(me%nvals)-nappend) then write(*,*) "reached end of integer range for dynamic array!" write(*,*) "aborting!!" stop end if if (me%nvals + nappend > me%containersize) then call expand( me = me, & & increment = nappend, & & length = length ) end if me%sorted(:me%nvals+nappend) = newsorted(:me%nvals+nappend) curval = me%nvals do iadd=1,veclen if (addedval(iadd)) then curval = curval + 1 me%val(curval) = val(iadd) end if end do me%nvals = me%nvals + nappend if( present( wasadded ) ) wasadded = addedval end subroutine append_da_vecprojection ! ***************************************************************************** ! ! ***************************************************************************** ! !> truncate the array after the last valid entry and hence cut off the empty !! trailing empty entries !! subroutine truncate_da_projection(me) !------------------------------------------------------------------------ type(dyn_projectionarray_type) :: me !< array to sorttruncate !------------------------------------------------------------------------ type(ply_prj_init_type), allocatable :: swpval(:) integer, allocatable :: swpsort(:) !------------------------------------------------------------------------ if (me%nvals < me%containersize) then allocate(swpval(me%nvals)) allocate(swpsort(me%nvals)) swpval = me%val(:me%nvals) swpsort = me%sorted(:me%nvals) call move_alloc(swpval, me%val) call move_alloc(swpsort, me%sorted) me%containersize = me%nvals end if end subroutine truncate_da_projection ! ***************************************************************************** ! ! ***************************************************************************** ! !> empty all contents of the array without changing the size or status of any !! array !! subroutine empty_da_projection(me) !------------------------------------------------------------------------ type(dyn_projectionarray_type) :: me !< array to sorttruncate !------------------------------------------------------------------------ ! reset the number of entries me%nvals = 0 end subroutine empty_da_projection ! ***************************************************************************** ! ! ***************************************************************************** ! !> fixing the dynamic array !! !! truncate the array after the last valid entry and hence cut off the empty !! trailing empty entries !! store the array in the sorted order according to the sorted( ) array !! subroutine sorttruncate_da_projection(me) !------------------------------------------------------------------------ type(dyn_projectionarray_type) :: me !< array to sorttruncate !------------------------------------------------------------------------ type(dyn_projectionarray_type) :: tarray !< temporary array integer :: ival integer :: dpos !------------------------------------------------------------------------ ! allocate the temporary array call init( me = tarray, length = me%nvals ) ! copy the entries in a sorted fashion into the temporary array do ival = 1, me%nvals call append( me = tarray, val = me%val( me%sorted( ival )), & & pos = dpos) enddo call destroy( me = me ) me = tarray call destroy( me = tarray ) end subroutine sorttruncate_da_projection ! ***************************************************************************** ! ! ***************************************************************************** ! !> expanding the dynamic array !! !! this is a helping subroutine, which doubles the container !! of the given dynamic array. as the container might be !! initially 0-sized, a module variable minlength has been introduced, which !! is used here, to at least create a container of this size. subroutine expand_da_projection(me, increment, length) !------------------------------------------------------------------------ type(dyn_projectionarray_type) :: me !< array to resize integer, optional :: increment !< used for vector append !> optional length to expand the array integer, intent(in), optional :: length !------------------------------------------------------------------------ type(ply_prj_init_type), allocatable :: swpval(:) integer, allocatable :: swpsort(:) !------------------------------------------------------------------------ integer :: addvals, explen !------------------------------------------------------------------------ addvals = 1 if (present(increment)) addvals = increment if (addvals > 0) then ! if length is present, use that, otherwise double the size if( present( length ) ) then explen = length else ! set the global minimum length, if doubling would be smaller than that explen = max(me%containersize, minlength) end if ! check whether all elements will fit if( addvals > explen ) then explen = addvals end if ! check whether the new size will exceed the max container size. if( (huge(me%containersize) - explen) <= me%containersize ) then ! if so, expand to the maximum size me%containersize = huge(me%containersize) else ! if not, expand to the calculated size me%containersize = me%containersize + explen end if ! only need to do something, if there are actually values to append. if (me%nvals > 0) then allocate(swpval(me%containersize)) swpval(1:me%nvals) = me%val(1:me%nvals) call move_alloc( swpval, me%val ) allocate(swpsort(me%containersize)) swpsort(1:me%nvals) = me%sorted(1:me%nvals) call move_alloc( swpsort, me%sorted ) else ! me%nvals == 0 if( allocated(me%val) ) & deallocate(me%val) allocate(me%val(me%containersize)) if( allocated(me%sorted) ) & deallocate(me%sorted) allocate(me%sorted(me%containersize)) end if end if end subroutine expand_da_projection ! ***************************************************************************** ! ! ***************************************************************************** ! !> return the sorted position of a value in the given dynamic array !! !! if the value was not found, !! - return 0 if nextifnotfound = .false. !! - return position at the end if nextifnotfound = .true. function sortposofval_projection(me, val, nextifnotfound, lower, upper) result(pos) !------------------------------------------------------------------------ type(dyn_projectionarray_type), intent(in) :: me !< dynamic array type(ply_prj_init_type), intent(in) :: val !< value to look for !> flag to indicate, if the next entry in the list should be returned, !! if the searched one is not found. logical, intent(in), optional :: nextifnotfound integer, intent(in), optional :: lower !< lower search limit integer, intent(in), optional :: upper !< upper search limit integer :: pos !< position of val in the sorted list, 0 if not found !------------------------------------------------------------------------ logical :: retnext integer :: lb, ub integer :: mid type(ply_prj_init_type) :: lb_val, ub_val type(ply_prj_init_type) :: mid_val !------------------------------------------------------------------------ retnext = .false. if (present(nextifnotfound)) retnext = nextifnotfound lb = 1 ub = me%nvals if( present( lower ) ) lb = lower if( present( upper ) ) ub = upper pos = 0 if (retnext) pos = lb !> binary search on sorted list do while(ub >= lb) lb_val = me%val(me%sorted(lb)) if (val < lb_val) then if (retnext) pos = lb exit end if ub_val = me%val(me%sorted(ub)) if (val > ub_val) then if (retnext) pos = ub+1 exit end if ! safe guard against integer limit overflow mid = lb + (ub-lb) / 2 mid_val = me%val(me%sorted(mid)) if (val == mid_val) then pos = mid exit end if if (val > mid_val) then lb = mid + 1 else ub = mid - 1 end if end do end function sortposofval_projection ! ***************************************************************************** ! ! ***************************************************************************** ! !> the actual position of a given value in the dynamic array !! !! most likely this is what you need in codes, using this !! data structure, it first does the binary search on the sorted !! values with sortposofval_projection and then returns the looked !! up position in the original unsorted array, which corresponds !! to the position returned by the append routine. function posofval_projection(me, val, nextifnotfound, lower, upper) result(pos) !------------------------------------------------------------------------ type(dyn_projectionarray_type), intent(in) :: me !< dynamic array type(ply_prj_init_type), intent(in) :: val !< value to search for !> flag to indicate, if the position of the next entry in the sorted !! list should be returned instead, if val is not found. logical, intent(in), optional :: nextifnotfound integer, intent(in), optional :: lower !< lower search limit integer, intent(in), optional :: upper !< upper search limit integer :: pos !< position in the array of the searche value, 0 if not found !------------------------------------------------------------------------ integer :: sortpos integer :: lb, ub !------------------------------------------------------------------------ lb = 1 ub = me%nvals if( present( lower ) ) lb = lower if( present( upper ) ) ub = upper sortpos = sortedposofval(me, val, nextifnotfound, lb, ub) ! if result (sorted pos) if ((sortpos <= me%nvals) .and. (sortpos > 0)) then pos = me%sorted(sortpos) else pos = sortpos end if end function posofval_projection ! ***************************************************************************** ! ! ************************************************************************ ! pure subroutine Copy_ply_prj_init(left,right) ! -------------------------------------------------------------------- ! !> fpt to copy to type(ply_prj_init_type), intent(out) :: left !> fpt to copy from type(ply_prj_init_type), intent(in) :: right ! -------------------------------------------------------------------- ! left%header = right%header left%maxPolyDegree = right%maxPolyDegree left%basisType = right%basisType end subroutine copy_ply_prj_init ! ************************************************************************ ! ! ************************************************************************ ! !> Define a projection, without filling its body. pure subroutine ply_prj_init_define(me, header, maxPolyDegree, basisType) ! -------------------------------------------------------------------- ! type(ply_prj_init_type), intent(inout) :: me type(ply_prj_header_type), intent(in) :: header integer, intent(in) :: maxPolyDegree integer, intent(in) :: basisType ! -------------------------------------------------------------------- ! me%header = header me%maxPolyDegree = maxPolyDegree me%basisType = basisType end subroutine ply_prj_init_define ! ************************************************************************ ! ! ************************************************************************ ! !> Load settings to describe a projection method from a Lua table. subroutine ply_fill_dynProjectArray( proj_pos, dyn_projectionArray, & & basisType, maxPolyDegree, conf, parent ) ! -------------------------------------------------------------------- ! integer, intent(inout) :: proj_pos type(dyn_ProjectionArray_type), intent(inout) :: dyn_projectionArray type(flu_State), intent(in) :: conf integer, intent(in) :: basisType integer, intent(in) :: maxPolyDegree integer, intent(in) :: parent ! -------------------------------------------------------------------- ! type(ply_prj_header_type) :: header type(ply_prj_init_type) :: proj_init ! -------------------------------------------------------------------- ! ! check if it is general projection (no parent is present) or individuall ! projection call ply_prj_header_load( me = header, & & conf = conf, & & parent = parent ) ! --> projection table exist, we build up the init_type and check if ! it is already in the DA ! define the init_type call ply_prj_init_define( me = proj_init, & & header = header, & & maxPolyDegree = maxPolyDegree, & & basisType = basisType ) ! Call to the unqiue list -> dynamic array for the projection method ! chack if the list needs to be appended...store the position write(logUnit(5),*) 'The projection_initialization type is' write(logUnit(5),*) ' kind=', proj_init%header%kind write(logUnit(5),*) ' degree=', proj_init%maxPolydegree write(logUnit(5),*) ' basisType=', proj_init%basisType write(logUnit(5),*) 'Now append the dynamic list for poly projection' call append( me = dyn_projectionArray, & & val = proj_init, & & pos = proj_pos ) end subroutine ply_fill_dynProjectArray ! ************************************************************************ ! ! ************************************************************************ ! !> This function provides the test for equality of two projections. !! !! Two projections are considered to be equal, if their kind, nodes_kind, !! maxPolyDegree and oversampling are equal. pure function isEqual(left, right) result(equality) ! -------------------------------------------------------------------- ! !> projection to compare type(ply_prj_init_type), intent(in) :: left !> projection to compare against type(ply_prj_init_type), intent(in) :: right !> is equal?? logical :: equality ! -------------------------------------------------------------------- ! equality = ( left%header == right%header ) & & .and. ( left%maxPolyDegree == right%maxPolyDegree ) & & .and. ( left%basisType == right%basisType ) end function isEqual ! ************************************************************************ ! ! ************************************************************************ ! !> This function provides the test for unequality of two projections. !! !! Two projections are considered to be unequal, if their kind, nodes_kind, !! maxpolydegree or factor are not equal. pure function isUnequal(left, right) result(unequality) ! -------------------------------------------------------------------- ! !> projection to compare type(ply_prj_init_type), intent(in) :: left !> projection to compare against type(ply_prj_init_type), intent(in) :: right !> is unequal?? logical :: unequality ! -------------------------------------------------------------------- ! unequality = ( left%header /= right%header ) & & .or. ( left%maxPolyDegree /= right%maxPolyDegree ) & & .or. ( left%basisType /= right%basisType ) end function isUnequal ! ************************************************************************ ! ! ************************************************************************ ! !> This function provides a < comparison of two projections. !! !! Sorting of projections is given by maxPolyDegree, kind, nodes_kind and !! last by factor. pure function isSmaller(left, right) result(small) ! -------------------------------------------------------------------- ! !> projection to compare type(ply_prj_init_type), intent(in) :: left !> projection to compare against type(ply_prj_init_type), intent(in) :: right !> is smaller?? logical :: small ! -------------------------------------------------------------------- ! small = .false. if (left%header < right%header) then small = .true. else if (left%header == right%header) then if (left%maxPolyDegree < right%maxPolyDegree) then small = .true. else if (left%maxPolyDegree == right%maxPolyDegree) then small = (left%basisType < right%basisType) end if end if end if end if end function isSmaller ! ************************************************************************ ! ! ************************************************************************ ! !> This function provides a <= comparison of two projections. !! !! Sorting of projections is given by maxPolyDegree, kind, nodes_kind and !! last by factor. pure function isSmallerOrEqual(left, right) result(small) ! -------------------------------------------------------------------- ! !> projection to compare type(ply_prj_init_type), intent(in) :: left !> projection to compare against type(ply_prj_init_type), intent(in) :: right !> is smaller?? logical :: small ! -------------------------------------------------------------------- ! small = .false. if (left%header < right%header) then small = .true. else if (left%header == right%header) then if (left%maxPolyDegree < right%maxPolyDegree) then small = .true. else if (left%maxPolyDegree == right%maxPolyDegree) then small = (left%basisType <= right%basisType) end if end if end if end if end function isSmallerOrEqual ! ************************************************************************ ! ! ************************************************************************ ! !> This function provides a > comparison of two projections. !! !! Sorting of projections is given by maxPolyDegree, kind, nodes_kind and !! last by factor. pure function isGreater(left, right) result(great) ! -------------------------------------------------------------------- ! !> projection to compare type(ply_prj_init_type), intent(in) :: left !> projection to compare against type(ply_prj_init_type), intent(in) :: right !> is greater?? logical :: great ! -------------------------------------------------------------------- ! great = .false. if (left%header > right%header) then great = .true. else if (left%header == right%header) then if (left%maxPolyDegree > right%maxPolyDegree) then great = .true. else if (left%maxPolyDegree == right%maxPolyDegree) then great = (left%basisType > right%basisType) end if end if end if end if end function isGreater ! ************************************************************************ ! ! ************************************************************************ ! !> This function provides a >= comparison of two projections. !! !! Sorting of projections is given by maxPolyDegree, kind, nodes_kind and !! last by factor. pure function isGreaterOrEqual(left, right) result(great) ! -------------------------------------------------------------------- ! !> projection to compare type(ply_prj_init_type), intent(in) :: left !> projection to compare against type(ply_prj_init_type), intent(in) :: right !> is greater?? logical :: great ! -------------------------------------------------------------------- ! great = .false. if (left%header > right%header) then great = .true. else if (left%header == right%header) then if (left%maxPolyDegree > right%maxPolyDegree) then great = .true. else if (left%maxPolyDegree == right%maxPolyDegree) then great = (left%basisType >= right%basisType) end if end if end if end if end function isGreaterOrEqual ! ************************************************************************ ! end module ply_dynarray_project_module