mus_derQuanPoisson_module Module

This module provides the MUSUBI specific functions for calculating macroscopic quantities from the state variables. The depending common interface between MUSUBI and ATELES is defined in the tem_derived_module. The functionality for accessing a variable from the state and evaluating a lua function are also provided in the tem_derived module. A Novel lattice boltzmann model for poisson equation author> Zhenhua Chai , Baochang Shi A Coupled Lattice Boltzmann method to solve Nernst -Planck Model for simulating Electro-Osmotic Flows


Uses

Used by

  • module~~mus_derquanpoisson_module~~UsedByGraph module~mus_derquanpoisson_module mus_derQuanPoisson_module module~mus_variable_module mus_variable_module module~mus_variable_module->module~mus_derquanpoisson_module module~mus_scheme_module mus_scheme_module module~mus_scheme_module->module~mus_variable_module module~mus_program_module mus_program_module module~mus_program_module->module~mus_scheme_module module~mus_dynloadbal_module mus_dynLoadBal_module module~mus_program_module->module~mus_dynloadbal_module module~mus_tools_module mus_tools_module module~mus_program_module->module~mus_tools_module module~mus_hvs_config_module mus_hvs_config_module module~mus_hvs_config_module->module~mus_scheme_module module~mus_config_module mus_config_module module~mus_hvs_config_module->module~mus_config_module module~mus_dynloadbal_module->module~mus_scheme_module module~mus_dynloadbal_module->module~mus_tools_module module~mus_tools_module->module~mus_scheme_module program~mus_harvesting mus_harvesting program~mus_harvesting->module~mus_scheme_module program~mus_harvesting->module~mus_hvs_config_module module~mus_config_module->module~mus_scheme_module module~mus_config_module->module~mus_tools_module module~mus_aux_module mus_aux_module module~mus_aux_module->module~mus_tools_module module~mus_tracking_module mus_tracking_module module~mus_tracking_module->module~mus_tools_module module~mus_hvs_aux_module mus_hvs_aux_module module~mus_hvs_aux_module->module~mus_tools_module module~mus_interpolate_verify_module mus_interpolate_verify_module module~mus_interpolate_verify_module->module~mus_config_module program~musubi musubi program~musubi->module~mus_program_module program~musubi->module~mus_config_module

Contents


Subroutines

public subroutine mus_append_derVar_poisson(varSys, solverData, fldLabel, derVarName, schemeKind, stencil)

subroutine to add derive variables for weakly compressible PB (schemekind = 'poisson') to the varsys. A Coupled Lattice Boltzmann Method to Solve Nernst-Planck Model for Simulating Electro-Osmotic flows author> Xuguang yang

Arguments

TypeIntentOptionalAttributesName
type(tem_varSys_type), intent(inout) :: varSys

global variable system

type(mus_varSys_solverData_type), intent(in), target:: solverData

Contains pointer to solver data types

character(len=*), intent(in) :: fldLabel

array of field label prefix. Size=nFields

type(grw_labelarray_type), intent(inout) :: derVarName

array of derive physical variables

character(len=*), intent(in) :: schemeKind

scheme kind

type(tem_stencilHeader_type), intent(in) :: stencil

compute stencil defintion

public subroutine deriveAuxPoisson_fromState(derVarPos, state, iField, nElems, nSize, iLevel, stencil, varSys, auxField)

This routine computes auxField 'potential' from state array

Read more…

Arguments

TypeIntentOptionalAttributesName
class(mus_derVarPos_type), intent(in) :: derVarPos

Position of derive variable in variable system

real(kind=rk), intent(in) :: state(:)

Array of state n * layout%stencil(1)%QQ * nFields

integer, intent(in) :: iField

Current field

integer, intent(in) :: nElems

number of elements

integer, intent(in) :: nSize

number of elements in state array

integer, intent(in) :: iLevel

current level

type(tem_stencilHeader_type), intent(in) :: stencil

stencil header contains discrete velocity vectors

type(tem_varSys_type), intent(in) :: varSys

variable system which is required to access fieldProp information via variable method data c_ptr

real(kind=rk), intent(inout) :: auxField(:)

Output of this routine Size: nElems*nAuxScalars

public subroutine deriveEquilPoisson_fromAux(derVarPos, auxField, iField, nElems, varSys, layout, fEq)

This routine computes equilbrium from auxField

Read more…

Arguments

TypeIntentOptionalAttributesName
class(mus_derVarPos_type), intent(in) :: derVarPos

Position of derive variable in variable system

real(kind=rk), intent(in) :: auxField(:)

Array of auxField. Single species: dens_1, vel_1, dens_2, vel_2, .. dens_n, vel_n multi-species: dens_1_sp1, vel_1_spc1, dens_1_sp2, vel_1_spc2, dens_2_sp1, vel_2_spc2, dens_2_sp2, vel_2_spc2 ... dens_n_sp1, vel_n_sp1, dens_n_sp2, vel_n_spc2 Access: (iElem-1)*nAuxScalars + auxField_varPos

integer, intent(in) :: iField

Current field

integer, intent(in) :: nElems

number of elements

type(tem_varSys_type), intent(in) :: varSys

variable system which is required to access fieldProp information via variable method data c_ptr

type(mus_scheme_layout_type), intent(in) :: layout

scheme layout contains stencil definition and lattice weights

real(kind=rk), intent(out) :: fEq(:)

Output of this routine Dimension: n*QQ of res

public recursive subroutine derivePotential_forElement(fun, varSys, elempos, time, tree, nElems, nDofs, res)

Calculate the potential of a given set of elements (sum up all links). This routine is used to compute potential for all scheme kinds

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varSys

The variable system to obtain the variable from.

integer, intent(in) :: elempos(:)

Position of the TreeID of the element to get the variable for in the global treeID list.

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

type(treelmesh_type), intent(in) :: tree

global treelm mesh info

integer, intent(in) :: nElems

Number of values to obtain for this variable (vectorized access).

integer, intent(in) :: nDofs

Number of degrees of freedom within an element.

real(kind=rk), intent(out) :: res(:)

Resulting values for the requested variable.

Linearized array dimension: (n requested entries) x (nComponents of this variable) x (nDegrees of freedom) Access: (iElem-1)fun%nComponentsnDofs + (iDof-1)*fun%nComponents + iComp

public recursive subroutine derivePotential_fromIndex(fun, varSys, time, iLevel, idx, idxLen, nVals, res)

Calculate the potential of a given set of elements (sum up all links). This routine is used to compute potential for all scheme kinds

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varSys

The variable system to obtain the variable from.

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

integer, intent(in) :: iLevel

Level on which values are requested

integer, intent(in) :: idx(:)

Index of points in the growing array and variable val array to return. Size: nVals

integer, intent(in), optional :: idxLen(:)

With idx as start index in contiguous memory, idxLength defines length of each contiguous memory Size: nVals

integer, intent(in) :: nVals

Number of values to obtain for this variable (vectorized access).

real(kind=rk), intent(out) :: res(:)

Resulting values for the requested variable.

Dimension: n requested entries x nComponents of this variable Access: (iElem-1)*fun%nComponents + iComp

public subroutine applySrc_chargeDensity_2ndOrd(fun, inState, outState, neigh, auxField, nPdfSize, iLevel, varSys, time, phyConvFac, derVarPos)

Update state with source variable "ChargeDensity" with 2nd order integration of source Term. Refer to Appendix in PhD Thesis of K. Masilamani "Coupled Simulation Framework to Simulate Electrodialysis Process for

Read more…

Arguments

TypeIntentOptionalAttributesName
class(mus_source_op_type), intent(in) :: fun

Description of method to apply source terms

real(kind=rk), intent(in) :: inState(:)

input pdf vector

real(kind=rk), intent(inout) :: outState(:)

output pdf vector

integer, intent(in) :: neigh(:)

connectivity Array corresponding to state vector

real(kind=rk), intent(in) :: auxField(:)

auxField array

integer, intent(in) :: nPdfSize

number of elements in state Array

integer, intent(in) :: iLevel

current level

type(tem_varSys_type), intent(in) :: varSys

variable system

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

type(mus_convertFac_type), intent(in) :: phyConvFac

Physics conversion factor for current level

type(mus_derVarPos_type), intent(in) :: derVarPos(:)

position of derived quantities in varsys

public subroutine applySrc_chargeDensity_1stOrd(fun, inState, outState, neigh, auxField, nPdfSize, iLevel, varSys, time, phyConvFac, derVarPos)

Update state with source variable "ChargeDensity" with 1st order integration of source Term. Refer to Appendix in PhD Thesis of K. Masilamani "Coupled Simulation Framework to Simulate Electrodialysis Process for Seawater Desalination"

Read more…

Arguments

TypeIntentOptionalAttributesName
class(mus_source_op_type), intent(in) :: fun

Description of method to apply source terms

real(kind=rk), intent(in) :: inState(:)

input pdf vector

real(kind=rk), intent(inout) :: outState(:)

output pdf vector

integer, intent(in) :: neigh(:)

connectivity Array corresponding to state vector

real(kind=rk), intent(in) :: auxField(:)

auxField array

integer, intent(in) :: nPdfSize

number of elements in state Array

integer, intent(in) :: iLevel

current level

type(tem_varSys_type), intent(in) :: varSys

variable system

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

type(mus_convertFac_type), intent(in) :: phyConvFac

Physics conversion factor for current level

type(mus_derVarPos_type), intent(in) :: derVarPos(:)

position of derived quantities in varsys

public recursive subroutine deriveSrc_chargeDensity(fun, varSys, elempos, time, tree, nElems, nDofs, res)

Calculate charge density source variable referred in config file

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varSys

The variable system to obtain the variable from.

integer, intent(in) :: elempos(:)

Position of the TreeID of the element to get the variable for in the global treeID list.

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

type(treelmesh_type), intent(in) :: tree

global treelm mesh info

integer, intent(in) :: nElems

Number of values to obtain for this variable (vectorized access).

integer, intent(in) :: nDofs

Number of degrees of freedom within an element.

real(kind=rk), intent(out) :: res(:)

Resulting values for the requested variable.

Linearized array dimension: (n requested entries) x (nComponents of this variable) x (nDegrees of freedom) Access: (iElem-1)fun%nComponentsnDofs + (iDof-1)*fun%nComponents + iComp

private recursive subroutine mus_derivePotential(fun, varsys, stencil, iLevel, posInState, pdf, res, nVals)

Calculate the potential of a given set of pdfs of elements

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varsys

the variable system to obtain the variable from.

type(tem_stencilHeader_type), intent(in) :: stencil

fluid stencil defintion

integer, intent(in) :: iLevel

current Level

integer, intent(in) :: posInState(:)

Position of element in levelwise state array

real(kind=rk), intent(in) :: pdf(:)

pdf array

real(kind=rk), intent(out) :: res(:)

results

integer, intent(in) :: nVals

nVals to get

private recursive subroutine mus_deriveElectricField(fun, varsys, stencil, iLevel, posInState, pdf, res, nVals)

Calculate the electric_field of a given pre-collision pdfs i.e fetch_pdf_now

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varsys

the variable system to obtain the variable from.

type(tem_stencilHeader_type), intent(in) :: stencil

fluid stencil defintion

integer, intent(in) :: iLevel

current Level

integer, intent(in) :: posInState(:)

Position of element in levelwise state array

real(kind=rk), intent(in) :: pdf(:)

pdf array contains pre-collision using FETCH and nNow

real(kind=rk), intent(out) :: res(:)

results

integer, intent(in) :: nVals

nVals to get

private recursive subroutine deriveElectricfield_forElement(fun, varSys, elempos, time, tree, nElems, nDofs, res)

Calculate the electric field of a given set of elements (sum up all links). This routine is used to compute electric field for all scheme kinds

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varSys

The variable system to obtain the variable from.

integer, intent(in) :: elempos(:)

Position of the TreeID of the element to get the variable for in the global treeID list.

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

type(treelmesh_type), intent(in) :: tree

global treelm mesh info

integer, intent(in) :: nElems

Number of values to obtain for this variable (vectorized access).

integer, intent(in) :: nDofs

Number of degrees of freedom within an element.

real(kind=rk), intent(out) :: res(:)

Resulting values for the requested variable.

Linearized array dimension: (n requested entries) x (nComponents of this variable) x (nDegrees of freedom) Access: (iElem-1)fun%nComponentsnDofs + (iDof-1)*fun%nComponents + iComp

private recursive subroutine deriveElectricfield_fromIndex(fun, varSys, time, iLevel, idx, idxLen, nVals, res)

Calculate the electric field of a given set of elements (sum up all links). This routine is used to compute electric field for all scheme kinds

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varSys

The variable system to obtain the variable from.

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

integer, intent(in) :: iLevel

Level on which values are requested

integer, intent(in) :: idx(:)

Index of points in the growing array and variable val array to return. Size: nVals

integer, intent(in), optional :: idxLen(:)

With idx as start index in contiguous memory, idxLength defines length of each contiguous memory Size: nVals

integer, intent(in) :: nVals

Number of values to obtain for this variable (vectorized access).

real(kind=rk), intent(out) :: res(:)

Resulting values for the requested variable.

Dimension: n requested entries x nComponents of this variable Access: (iElem-1)*fun%nComponents + iComp

private recursive subroutine deriveChargeDensityBoltzAppr_forElement(fun, varSys, elempos, time, tree, nElems, nDofs, res)

Calculate charge density from potential field using Boltzmann approximation

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varSys

The variable system to obtain the variable from.

integer, intent(in) :: elempos(:)

Position of the TreeID of the element to get the variable for in the global treeID list.

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

type(treelmesh_type), intent(in) :: tree

global treelm mesh info

integer, intent(in) :: nElems

Number of values to obtain for this variable (vectorized access).

integer, intent(in) :: nDofs

Number of degrees of freedom within an element.

real(kind=rk), intent(out) :: res(:)

Resulting values for the requested variable.

Linearized array dimension: (n requested entries) x (nComponents of this variable) x (nDegrees of freedom) Access: (iElem-1)fun%nComponentsnDofs + (iDof-1)*fun%nComponents + iComp

private recursive subroutine deriveChargeDensityBoltzAppr_fromIndex(fun, varSys, time, iLevel, idx, idxLen, nVals, res)

Calculate charge density from potential field using Boltzmann approximation from given index

Read more…

Arguments

TypeIntentOptionalAttributesName
class(tem_varSys_op_type), intent(in) :: fun

Description of the method to obtain the variables, here some preset values might be stored, like the space time function to use or the required variables.

type(tem_varSys_type), intent(in) :: varSys

The variable system to obtain the variable from.

type(tem_time_type), intent(in) :: time

Point in time at which to evaluate the variable.

integer, intent(in) :: iLevel

Level on which values are requested

integer, intent(in) :: idx(:)

Index of points in the growing array and variable val array to return. Size: nVals

integer, intent(in), optional :: idxLen(:)

With idx as start index in contiguous memory, idxLength defines length of each contiguous memory Size: nVals

integer, intent(in) :: nVals

Number of values to obtain for this variable (vectorized access).

real(kind=rk), intent(out) :: res(:)

Resulting values for the requested variable.

Dimension: n requested entries x nComponents of this variable Access: (iElem-1)*fun%nComponents + iComp