! Copyright (c) 2013 Jens Zudrop <j.zudrop@grs-sim.de> ! Copyright (c) 2013 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2017 Daniel PetrĂ³ <daniel.petro@student.uni-siegen.de> ! Copyright (c) 2019 Harald Klimach <harald.klimach@uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. module tem_heaviside_gibbs_fun_module use env_module, only: rk use tem_aux_module, only: tem_abort use tem_param_module, only: PI use tem_logging_module, only: logUnit use aotus_module, only: flu_State, aot_get_val implicit none private !> Defines a Heaviside function, including Gibbs oscillations. type tem_heaviside_gibbs_type !> The location of the jump real(kind=rk) :: center !> Approximation order integer :: order !> Asymptotic function value left of the jump real(kind=rk) :: left !> Asymptotic function value right of the jump real(kind=rk) :: right end type tem_heaviside_gibbs_type public :: tem_heaviside_gibbs_type, tem_load_heaviside_gibbs, tem_eval_heaviside_gibbs contains ! ****************************************************************************** ! !> This subroutine loads the definition of a spatial Heaviside function !! including Gibbs oscillations occuring for a high order approximation. subroutine tem_load_heaviside_gibbs( conf, thandle, me ) ! --------------------------------------------------------------------------- !> Heaviside function data type(tem_heaviside_gibbs_type),intent(out) :: me !> lua state type type(flu_State) :: conf !> aotus parent handle integer, intent(in) :: thandle ! --------------------------------------------------------------------------- integer :: iError ! --------------------------------------------------------------------------- ! Center call aot_get_val( L = conf, & & thandle = thandle, & & key = 'center', & & val = me%center, & & ErrCode = iError ) ! Order call aot_get_val( L = conf, & & thandle = thandle, & & key = 'order', & & val = me%order, & & ErrCode = iError ) ! Left value call aot_get_val( L = conf, & & thandle = thandle, & & key = 'left', & & val = me%left, & & ErrCode = iError ) ! Right value call aot_get_val( L = conf, & & thandle = thandle, & & key = 'right', & & val = me%right, & & ErrCode = iError ) write(logUnit(1),*) ' Data for Heaviside function (including Gibbs'// & & 'oscillations):' write(logUnit(1),*) ' * center =', me%center write(logUnit(1),*) ' * order =', me%order write(logUnit(1),*) ' * left =', me%left write(logUnit(1),*) ' * right =', me%right end subroutine tem_load_heaviside_gibbs ! ****************************************************************************** ! function tem_eval_heaviside_gibbs( me, coord, n) result(res) ! --------------------------------------------------------------------------- !> Description of the Heaviside function type(tem_heaviside_gibbs_type) :: me !> number of return values integer, intent( in ) :: n !> Coordinates to evaluate the function for !! 1st index goes over number of elements and !! 2nd index goes over x,y,z coordinates real(kind=rk), intent( in ) :: coord(n,3) !> return value of the function real( kind=rk ) :: res(n) ! --------------------------------------------------------------------------- integer :: iPoint real(kind=rk) :: dist, z ! --------------------------------------------------------------------------- ! Loop over all the points do iPoint = 1, n ! Distance from the center dist = me%center - coord(iPoint,1) z = 0.5_rk * dist * sqrt(1.0_rk-me%center**2) * (2.0_rk * real(me%order,rk) + 1.0_rk) ! Calculate the point value res(iPoint) = 0.5 * (me%left + me%right) + ( dsinint(z)/PI ) * ( me%left - me%right ) end do end function tem_eval_heaviside_gibbs !> Calculate sine integral of xvalue. !! AUTHOR: Allan MacLeod !! Dept. of Mathematics and Statistics !! University of Paisley !! Scotland !! (e-mail: macl_ms0@paisley.ac.uk) function dsinint(xvalue) result(fn_val) ! --------------------------------------------------------------------------- real(kind=rk), intent(in) :: xvalue real(kind=rk) :: fn_val ! --------------------------------------------------------------------------- INTEGER :: i, indsgn real(kind=rk) :: cx, fival, gival, sumden, sumnum, sx, x, xhigh, xsq real(kind=rk), parameter :: zero = 0.0_rk, one = 1.0_rk, six = 6.0_rk, & twelve = 12.0_rk real(kind=rk), parameter :: piby2 = 1.5707963267948966192_rk real(kind=rk), parameter :: xlow = 4.47E-8_rk, xhigh1 = 2.32472E8_rk real(kind=rk), parameter :: xhigh2 = 9.0072E15_rk, xhigh3 = 1.4148475E16_rk real(kind=rk), parameter :: asintn(0:7) = (/ 1.0_rk, & -0.44663998931312457298E-1_rk, 0.11209146443112369449E-2_rk, & -0.13276124407928422367E-4_rk, 0.85118014179823463879E-7_rk, & -0.29989314303147656479E-9_rk, 0.55401971660186204711E-12_rk, & -0.42406353433133212926E-15_rk /) real(kind=rk), parameter :: asintd(0:7) = (/ 1.0_rk, & 0.10891556624243098264E-1_rk, 0.59334456769186835896E-4_rk, & 0.21231112954641805908E-6_rk, 0.54747121846510390750E-9_rk, & 0.10378561511331814674E-11_rk, 0.13754880327250272679E-14_rk,& 0.10223981202236205703E-17_rk /) real(kind=rk), parameter :: afn1(0:7) = (/ 0.99999999962173909991_rk, & 0.36451060338631902917E3_rk, 0.44218548041288440874E5_rk, & 0.22467569405961151887E7_rk, 0.49315316723035561922E8_rk, & 0.43186795279670283193E9_rk, 0.11847992519956804350E10_rk,& 0.45573267593795103181E9_rk /) real(kind=rk), parameter :: afd1(0:7) = (/ 1.0_rk, 0.36651060273229347594E3_rk, & 0.44927569814970692777E5_rk, 0.23285354882204041700E7_rk, & 0.53117852017228262911E8_rk, 0.50335310667241870372E9_rk, & 0.16575285015623175410E10_rk, 0.11746532837038341076E10_rk /) real(kind=rk), parameter :: agn1(0:8) = (/ 0.99999999920484901956_rk, & 0.51385504875307321394E3_rk, 0.92293483452013810811E5_rk, & 0.74071341863359841727E7_rk, 0.28142356162841356551E9_rk, & 0.49280890357734623984E10_rk, 0.35524762685554302472E11_rk, & 0.79194271662085049376E11_rk, 0.17942522624413898907E11_rk /) real(kind=rk), parameter :: agd1(0:8) = (/ 1.0_rk, 0.51985504708814870209E3_rk, & 0.95292615508125947321E5_rk, 0.79215459679762667578E7_rk, & 0.31977567790733781460E9_rk, 0.62273134702439012114E10_rk, & 0.54570971054996441467E11_rk, 0.18241750166645704670E12_rk, & 0.15407148148861454434E12_rk /) real(kind=rk), parameter :: afn2(0:7) = (/ 0.19999999999999978257E1_rk, & 0.22206119380434958727E4_rk, 0.84749007623988236808E6_rk, & 0.13959267954823943232E9_rk, 0.10197205463267975592E11_rk, & 0.30229865264524075951E12_rk, 0.27504053804288471142E13_rk, & 0.21818989704686874983E13_rk /) real(kind=rk), parameter :: afd2(0:7) = (/ 1.0_rk, 0.11223059690217167788E4_rk, & 0.43685270974851313242E6_rk, 0.74654702140658116258E8_rk, & 0.58580034751805687471E10_rk, 0.20157980379272098841E12_rk, & 0.26229141857684496445E13_rk, 0.87852907334918467516E13_rk /) real(kind=rk), parameter :: agn2(0:8) = (/ 0.59999999999999993089E1_rk, & 0.96527746044997139158E4_rk, 0.56077626996568834185E7_rk, & 0.15022667718927317198E10_rk, 0.19644271064733088465E12_rk, & 0.12191368281163225043E14_rk, 0.31924389898645609533E15_rk, & 0.25876053010027485934E16_rk, 0.12754978896268878403E16_rk /) real(kind=rk), parameter :: agd2(0:8) = (/ 1.0_rk, 0.16287957674166143196E4_rk, & 0.96636303195787870963E6_rk, 0.26839734750950667021E9_rk, & 0.37388510548029219241E11_rk, 0.26028585666152144496E13_rk, & 0.85134283716950697226E14_rk, 0.11304079361627952930E16_rk, & 0.42519841479489798424E16_rk /) ! --------------------------------------------------------------------------- ! START COMPUTATION x = xvalue indsgn = 1 IF ( x < zero ) THEN x = -x indsgn = -1 END IF ! CODE FOR 0 <= |X| <= 6 IF ( x <= six ) THEN IF ( x < xlow ) THEN fn_val = x ELSE sumnum = zero sumden = zero xsq = x * x DO i = 7 , 0 , -1 sumnum = sumnum * xsq + asintn(i) sumden = sumden * xsq + asintd(i) END DO fn_val = x * sumnum / sumden END IF ! CODE FOR 6 < |X| <= 12 ELSE IF ( x > six .AND. x <= twelve ) THEN sumnum = zero sumden = zero xsq = one / ( x * x ) DO i = 7 , 0 , -1 sumnum = sumnum * xsq + afn1(i) sumden = sumden * xsq + afd1(i) END DO fival = sumnum / ( x * sumden ) sumnum = zero sumden = zero DO i = 8 , 0 , -1 sumnum = sumnum * xsq + agn1(i) sumden = sumden * xsq + agd1(i) END DO gival = xsq * sumnum / sumden fn_val = piby2 - fival * COS(x) - gival * SIN(x) ! CODE FOR |X| > 12 ELSE xhigh = MIN(xhigh2, xhigh3) IF ( x > xhigh ) THEN fn_val = piby2 ELSE cx = COS(x) sx = SIN(x) xsq = one / ( x * x ) IF ( x > xhigh1 ) THEN fn_val = piby2 - cx / x - sx * xsq ELSE sumnum = zero sumden = zero DO i = 7 , 0 , -1 sumnum = sumnum * xsq + afn2(i) sumden = sumden * xsq + afd2(i) END DO fival = ( one - xsq * sumnum / sumden ) / x sumnum = zero sumden = zero DO i = 8 , 0 , -1 sumnum = sumnum * xsq + agn2(i) sumden = sumden * xsq + agd2(i) END DO gival = ( one - xsq * sumnum / sumden ) * xsq fn_val = piby2 - cx * fival - sx * gival END IF END IF END IF IF ( indsgn == -1 ) fn_val = -fn_val RETURN end function dsinint end module tem_heaviside_gibbs_fun_module