module that holds all routines to calculate the flux for hyperbolic Maxwell equations.
Interface for fluxes of pure Maxwell equations.
Subroutine to calculate the flux for pure Maxwell equations without any divergence cleaning on the reference cubic face.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=rk), | intent(in) | :: | left(6) | Left state vector (as conservative variables). The order of this vector has to be \f$ (D_x, D_y, D_z, B_1, B_2, B_3) \f$ where E and B denoted electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | right(6) | Right state vector (as conservative variables). The order of this vector has to be (D_x, D_y, D_z, B_1, B_2, B_3) where E and B denoted the electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | left_mu | The magnetic permeability of the left element. |
||
real(kind=rk), | intent(in) | :: | left_epsi | The electric permitivity of the left element. |
||
real(kind=rk), | intent(in) | :: | right_mu | The magnetic permeability of the right element. |
||
real(kind=rk), | intent(in) | :: | right_epsi | The electric permitivity of the right element. |
||
real(kind=rk), | intent(out) | :: | flux(6) | The flux between left and right cell. The order of this vector is the same as the input arguments. |
calculate flux of pure maxwell equation directly on the
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,6,2) | |||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,6,2) | |||
integer, | intent(in) | :: | leftPos(nSides) | |||
integer, | intent(in) | :: | rightPos(nsides) | |||
integer, | intent(in) | :: | var(6) | |||
real(kind=rk), | intent(in) | :: | material_left(nSides,1,2) | |||
real(kind=rk), | intent(in) | :: | material_right(nSides,1,2) |
calculate flux of pure maxwell equation directly on the
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,6,2) | The modal representation on the faces, left and right trace. |
||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,6,2) | The fluxes for all faces, for left and right elements. |
||
integer, | intent(in) | :: | leftPos(nSides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | rightPos(nsides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | var(6) | Variable rotation indices |
||
real(kind=rk), | intent(in) | :: | material_left(nSides,nFaceDofs,2) | Material parameters for the left faces. |
||
real(kind=rk), | intent(in) | :: | material_right(nSides,nFaceDofs,2) | Material parameters for the right faces.
|
||
type(ply_poly_project_type) | :: | poly_proj | Data for projection method |
|||
real(kind=rk), | intent(inout) | :: | modalCoeffs(:,:,:) | Working array for the left and right modal coefficients |
||
real(kind=rk), | intent(inout) | :: | pntVal(:,:,:) | Working array for the left and right point values |
||
real(kind=rk), | intent(inout) | :: | nodalNumFlux(:,:) | Working array for the nodal flux |
||
real(kind=rk), | intent(inout) | :: | numFluxBuffer(:,:) | Working array for the modal numerical flux |
Interface for fluxes of Maxwell equations with hyperbolic divergence cleaning.
Subroutine to calculate the flux for pure Maxwell equations with
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=rk), | intent(in) | :: | left(8) | Left state vector (as conservative variables). The order of this vector has to be \f$ (D_x, D_y, D_z, B_1, B_2, B_3, phi, psi) \f$ where E and B denoted electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | right(8) | Right state vector (as conservative variables). The order of this vector has to be (D_x, D_y, D_z, B_1, B_2, B_3, phi, psi) where E and B denoted the electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | mat_left(4) | Material for the left face |
||
real(kind=rk), | intent(in) | :: | mat_right(4) | Material for the right face !> The magnetic permeability of the left element. real(kind=rk), intent(in) :: left_mu !> The electric permitivity of the left element. real(kind=rk), intent(in) :: left_epsi !> Parameter for the magnetic correction on the left element. real(kind=rk), intent(in) :: left_gam !> Parameter for the electric correction on the left element. real(kind=rk), intent(in) :: left_chi !> The magnetic permeability of the right element. real(kind=rk), intent(in) :: right_mu !> The electric permitivity of the right element. real(kind=rk), intent(in) :: right_epsi !> Parameter for the magnetic correction on the right element. real(kind=rk), intent(in) :: right_gam !> Parameter for the electric correction on the right element. real(kind=rk), intent(in) :: right_chi |
||
real(kind=rk), | intent(out) | :: | flux(8) | The flux between left and right cell. The order of this vector is the same as the input arguments. JZ: Old implementation of the flux. There must be an error somewhere. I have to check my solution for the Riemann problem agian. So, I replaced the flux by a simple Lax-Friedrich type flux. real(kind=rk) :: left_speedOfLight, right_speedOfLight real(kind=rk) :: inv_denom_mu, inv_denom_epsi ! -------------------------------------------------------------------------- ! The speed of light in the left and right element left_speedOfLight = 1.0_rk / sqrt( left_mu * left_epsi ) right_speedOfLight = 1.0_rk / sqrt( right_mu * right_epsi ) ! The inverse of the denominators inv_denom_mu = 1.0_rk / ((-1.0_rk)left_speedOfLightleft_mu - right_speedOfLightright_mu) inv_denom_epsi = 1.0_rk / (left_speedOfLightleft_epsi + right_speedOfLight*right_epsi) ! D_x flux(1) = inv_denom_mu * ( & & (-1.0_rk)left_chileft(1)/left_epsi & & - (-1.0_rk)right_chiright(1)/right_epsi & & ) & & + ( & & left_chileft_chileft(7) & & + right_chiright_chiright(7) & & ) / ( left_epsileft_mu + right_epsiright_mu ) ! B_x flux(4) = inv_denom_epsi * ( & & (-1.0_rk)left_gamleft(4)/left_mu & & - (-1.0_rk)right_gamright(4)/right_mu) & & + ( & & left_gamleft_gamleft(8) & & + right_gamright_gamright(8) & & ) / ( left_epsileft_mu + right_epsiright_mu ) ! the flux for phi (electric correction) flux(7) = ( & & left_speedOfLightleft(1) & & + right_speedOfLightright(1) & & + left_speedOfLightleft_chileft(7) & & - right_speedOfLightright_chiright(7) & & ) / (left_speedOfLight + right_speedOfLight) ! the flux for psi (magnetic correction) flux(8) = ( & & left_speedOfLightleft(4) & & + right_speedOfLightright(4) & & + left_speedOfLightleft_gamleft(8) & & - right_speedOfLightright_gamright(8) & & ) / (left_speedOfLight + right_speedOfLight) ! the flux for D_y flux(2) = ( & & ( (-1.0_rkleft(2) / left_epsi) & & - (-1.0_rkright(2) / right_epsi) ) & & - ( left_speedOfLight * left(6) & & + right_speedOfLight * right(6) )) ! the flux for B_z flux(6) = ( & & ( left_speedOfLight * left(2) & & + right_speedOfLight * right(2) ) & & + ( ( left(6) / left_mu ) & & - ( right(6) / right_mu ) )) ! the flux for D_z flux(3) = ( & & ( ( -1.0_rk * left(3) / left_epsi ) & & - ( -1.0_rk * right(3) / right_epsi ) ) & & + ( left_speedOfLight * left(5) & & + right_speedOfLight * right(5) ) & & ) ! the flux for B_y flux(5) = ( & & ( -1.0_rk * left_speedOfLight * left(3) & & - right_speedOfLight * right(3) ) & & + ( ( left(5) / left_mu ) & & - ( right(5) / right_mu) ) & & )
|
calculate flux of maxwell equation with hyperbolic divergence
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,8,2) | |||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,8,2) | |||
integer, | intent(in) | :: | leftPos(nSides) | |||
integer, | intent(in) | :: | rightPos(nsides) | |||
integer, | intent(in) | :: | var(8) | |||
real(kind=rk), | intent(in) | :: | material_left(nSides,1,4) | |||
real(kind=rk), | intent(in) | :: | material_right(nSides,1,4) | integer :: iSide, left, right, iDof real(kind=rk) :: left_mu, right_mu real(kind=rk) :: left_epsi, right_epsi real(kind=rk) :: left_gam, right_gam real(kind=rk) :: left_chi, right_chi real(kind=rk) :: left_speedOfLight, right_speedOfLight real(kind=rk) :: inv_denom_mu, inv_denom_epsi ! -------------------------------------------------------------------------- ! flux for D_X, B_Z, D_y and B_z do iDof = 1, nFaceDofs do iSide = 1, nSides
end do end do |
calculate flux of maxwell equation with hyperbolic divergence
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,8,2) | The modal representation on the faces, left and right trace. |
||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,8,2) | The fluxes for all faces, for left and right elements. |
||
integer, | intent(in) | :: | leftPos(nSides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | rightPos(nsides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | var(8) | Variable rotation indices |
||
real(kind=rk), | intent(in) | :: | material_left(nSides,nFaceDofs,4) | Material parameters for the left faces. |
||
real(kind=rk), | intent(in) | :: | material_right(nSides,nFaceDofs,4) | Material parameters for the right faces. |
||
type(ply_poly_project_type) | :: | poly_proj | Data for projection method !> Working array for the left and right modal coefficients real(kind=rk), intent(inout) :: left_modalCoeffs((fpt%nQuadPoints)2,8) real(kind=rk), intent(inout) :: right_modalCoeffs((fpt%nQuadPoints)2,8) !> Working array for the left and right point values real(kind=rk), intent(inout) :: left_pntVal((fpt%nQuadPoints)2,8) real(kind=rk), intent(inout) :: right_pntVal((fpt%nQuadPoints)2,8) !> Working array for the nodal flux real(kind=rk), intent(inout) :: nodalNumFlux((fpt%nQuadPoints)2,8) !> Working array for the modal numerical flux real(kind=rk), intent(inout) :: numFluxBuffer((fpt%nQuadPoints)2,8) |
|||
real(kind=rk), | intent(inout), | allocatable | :: | left_modalCoeffs(:,:) | Working array for the left and right modal coefficients |
|
real(kind=rk), | intent(inout), | allocatable | :: | right_modalCoeffs(:,:) | ||
real(kind=rk), | intent(inout), | allocatable | :: | left_pntVal(:,:) | Working array for the left and right point values |
|
real(kind=rk), | intent(inout), | allocatable | :: | right_pntVal(:,:) | ||
real(kind=rk), | intent(inout), | allocatable | :: | nodalNumFlux(:,:) | Working array for the nodal flux |
|
real(kind=rk), | intent(inout), | allocatable | :: | numFluxBuffer(:,:) | Working array for the modal numerical flux |
Function for physical flux of the Maxwell equations in terms of D and B.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=rk), | intent(in) | :: | state(8) | State to compute the fluxes from (D,B). |
||
real(kind=rk), | intent(in) | :: | material(4) | Material parameters (mu, epsilon) the flux calculation |
The resulting flux in x direction
Subroutine to calculate the flux for pure Maxwell equations without any divergence cleaning on the reference cubic face.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=rk), | intent(in) | :: | left(6) | Left state vector (as conservative variables). The order of this vector has to be \f$ (D_x, D_y, D_z, B_1, B_2, B_3) \f$ where E and B denoted electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | right(6) | Right state vector (as conservative variables). The order of this vector has to be (D_x, D_y, D_z, B_1, B_2, B_3) where E and B denoted the electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | left_mu | The magnetic permeability of the left element. |
||
real(kind=rk), | intent(in) | :: | left_epsi | The electric permitivity of the left element. |
||
real(kind=rk), | intent(in) | :: | right_mu | The magnetic permeability of the right element. |
||
real(kind=rk), | intent(in) | :: | right_epsi | The electric permitivity of the right element. |
||
real(kind=rk), | intent(out) | :: | flux(6) | The flux between left and right cell. The order of this vector is the same as the input arguments. |
calculate flux of pure maxwell equation directly on the
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,6,2) | The modal representation on the faces, left and right trace. |
||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,6,2) | The fluxes for all faces, for left and right elements. |
||
integer, | intent(in) | :: | leftPos(nSides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | rightPos(nsides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | var(6) | Variable rotation indices |
||
real(kind=rk), | intent(in) | :: | material_left(nSides,nFaceDofs,2) | Material parameters for the left faces. |
||
real(kind=rk), | intent(in) | :: | material_right(nSides,nFaceDofs,2) | Material parameters for the right faces.
|
||
type(ply_poly_project_type) | :: | poly_proj | Data for projection method |
|||
real(kind=rk), | intent(inout) | :: | modalCoeffs(:,:,:) | Working array for the left and right modal coefficients |
||
real(kind=rk), | intent(inout) | :: | pntVal(:,:,:) | Working array for the left and right point values |
||
real(kind=rk), | intent(inout) | :: | nodalNumFlux(:,:) | Working array for the nodal flux |
||
real(kind=rk), | intent(inout) | :: | numFluxBuffer(:,:) | Working array for the modal numerical flux |
calculate flux of pure maxwell equation directly on the
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,6,2) | |||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,6,2) | |||
integer, | intent(in) | :: | leftPos(nSides) | |||
integer, | intent(in) | :: | rightPos(nsides) | |||
integer, | intent(in) | :: | var(6) | |||
real(kind=rk), | intent(in) | :: | material_left(nSides,1,2) | |||
real(kind=rk), | intent(in) | :: | material_right(nSides,1,2) |
Subroutine to calculate the flux for pure Maxwell equations with
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=rk), | intent(in) | :: | left(8) | Left state vector (as conservative variables). The order of this vector has to be \f$ (D_x, D_y, D_z, B_1, B_2, B_3, phi, psi) \f$ where E and B denoted electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | right(8) | Right state vector (as conservative variables). The order of this vector has to be (D_x, D_y, D_z, B_1, B_2, B_3, phi, psi) where E and B denoted the electric field vetor and magnetic field (also called magnetic induction) vector. |
||
real(kind=rk), | intent(in) | :: | mat_left(4) | Material for the left face |
||
real(kind=rk), | intent(in) | :: | mat_right(4) | Material for the right face !> The magnetic permeability of the left element. real(kind=rk), intent(in) :: left_mu !> The electric permitivity of the left element. real(kind=rk), intent(in) :: left_epsi !> Parameter for the magnetic correction on the left element. real(kind=rk), intent(in) :: left_gam !> Parameter for the electric correction on the left element. real(kind=rk), intent(in) :: left_chi !> The magnetic permeability of the right element. real(kind=rk), intent(in) :: right_mu !> The electric permitivity of the right element. real(kind=rk), intent(in) :: right_epsi !> Parameter for the magnetic correction on the right element. real(kind=rk), intent(in) :: right_gam !> Parameter for the electric correction on the right element. real(kind=rk), intent(in) :: right_chi |
||
real(kind=rk), | intent(out) | :: | flux(8) | The flux between left and right cell. The order of this vector is the same as the input arguments. JZ: Old implementation of the flux. There must be an error somewhere. I have to check my solution for the Riemann problem agian. So, I replaced the flux by a simple Lax-Friedrich type flux. real(kind=rk) :: left_speedOfLight, right_speedOfLight real(kind=rk) :: inv_denom_mu, inv_denom_epsi ! -------------------------------------------------------------------------- ! The speed of light in the left and right element left_speedOfLight = 1.0_rk / sqrt( left_mu * left_epsi ) right_speedOfLight = 1.0_rk / sqrt( right_mu * right_epsi ) ! The inverse of the denominators inv_denom_mu = 1.0_rk / ((-1.0_rk)left_speedOfLightleft_mu - right_speedOfLightright_mu) inv_denom_epsi = 1.0_rk / (left_speedOfLightleft_epsi + right_speedOfLight*right_epsi) ! D_x flux(1) = inv_denom_mu * ( & & (-1.0_rk)left_chileft(1)/left_epsi & & - (-1.0_rk)right_chiright(1)/right_epsi & & ) & & + ( & & left_chileft_chileft(7) & & + right_chiright_chiright(7) & & ) / ( left_epsileft_mu + right_epsiright_mu ) ! B_x flux(4) = inv_denom_epsi * ( & & (-1.0_rk)left_gamleft(4)/left_mu & & - (-1.0_rk)right_gamright(4)/right_mu) & & + ( & & left_gamleft_gamleft(8) & & + right_gamright_gamright(8) & & ) / ( left_epsileft_mu + right_epsiright_mu ) ! the flux for phi (electric correction) flux(7) = ( & & left_speedOfLightleft(1) & & + right_speedOfLightright(1) & & + left_speedOfLightleft_chileft(7) & & - right_speedOfLightright_chiright(7) & & ) / (left_speedOfLight + right_speedOfLight) ! the flux for psi (magnetic correction) flux(8) = ( & & left_speedOfLightleft(4) & & + right_speedOfLightright(4) & & + left_speedOfLightleft_gamleft(8) & & - right_speedOfLightright_gamright(8) & & ) / (left_speedOfLight + right_speedOfLight) ! the flux for D_y flux(2) = ( & & ( (-1.0_rkleft(2) / left_epsi) & & - (-1.0_rkright(2) / right_epsi) ) & & - ( left_speedOfLight * left(6) & & + right_speedOfLight * right(6) )) ! the flux for B_z flux(6) = ( & & ( left_speedOfLight * left(2) & & + right_speedOfLight * right(2) ) & & + ( ( left(6) / left_mu ) & & - ( right(6) / right_mu ) )) ! the flux for D_z flux(3) = ( & & ( ( -1.0_rk * left(3) / left_epsi ) & & - ( -1.0_rk * right(3) / right_epsi ) ) & & + ( left_speedOfLight * left(5) & & + right_speedOfLight * right(5) ) & & ) ! the flux for B_y flux(5) = ( & & ( -1.0_rk * left_speedOfLight * left(3) & & - right_speedOfLight * right(3) ) & & + ( ( left(5) / left_mu ) & & - ( right(5) / right_mu) ) & & )
|
calculate flux of maxwell equation with hyperbolic divergence
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,8,2) | |||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,8,2) | |||
integer, | intent(in) | :: | leftPos(nSides) | |||
integer, | intent(in) | :: | rightPos(nsides) | |||
integer, | intent(in) | :: | var(8) | |||
real(kind=rk), | intent(in) | :: | material_left(nSides,1,4) | |||
real(kind=rk), | intent(in) | :: | material_right(nSides,1,4) | integer :: iSide, left, right, iDof real(kind=rk) :: left_mu, right_mu real(kind=rk) :: left_epsi, right_epsi real(kind=rk) :: left_gam, right_gam real(kind=rk) :: left_chi, right_chi real(kind=rk) :: left_speedOfLight, right_speedOfLight real(kind=rk) :: inv_denom_mu, inv_denom_epsi ! -------------------------------------------------------------------------- ! flux for D_X, B_Z, D_y and B_z do iDof = 1, nFaceDofs do iSide = 1, nSides
end do end do |
calculate flux of maxwell equation with hyperbolic divergence
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer, | intent(in) | :: | nTotalFaces | |||
integer, | intent(in) | :: | nSides | |||
integer, | intent(in) | :: | nFaceDofs | |||
real(kind=rk), | intent(in) | :: | faceRep(nTotalFaces,nFaceDofs,8,2) | The modal representation on the faces, left and right trace. |
||
real(kind=rk), | intent(inout) | :: | faceFlux(nTotalFaces,nFaceDofs,8,2) | The fluxes for all faces, for left and right elements. |
||
integer, | intent(in) | :: | leftPos(nSides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | rightPos(nsides) | Positions for the left and right elements of all faces |
||
integer, | intent(in) | :: | var(8) | Variable rotation indices |
||
real(kind=rk), | intent(in) | :: | material_left(nSides,nFaceDofs,4) | Material parameters for the left faces. |
||
real(kind=rk), | intent(in) | :: | material_right(nSides,nFaceDofs,4) | Material parameters for the right faces. |
||
type(ply_poly_project_type) | :: | poly_proj | Data for projection method !> Working array for the left and right modal coefficients real(kind=rk), intent(inout) :: left_modalCoeffs((fpt%nQuadPoints)2,8) real(kind=rk), intent(inout) :: right_modalCoeffs((fpt%nQuadPoints)2,8) !> Working array for the left and right point values real(kind=rk), intent(inout) :: left_pntVal((fpt%nQuadPoints)2,8) real(kind=rk), intent(inout) :: right_pntVal((fpt%nQuadPoints)2,8) !> Working array for the nodal flux real(kind=rk), intent(inout) :: nodalNumFlux((fpt%nQuadPoints)2,8) !> Working array for the modal numerical flux real(kind=rk), intent(inout) :: numFluxBuffer((fpt%nQuadPoints)2,8) |
|||
real(kind=rk), | intent(inout), | allocatable | :: | left_modalCoeffs(:,:) | Working array for the left and right modal coefficients |
|
real(kind=rk), | intent(inout), | allocatable | :: | right_modalCoeffs(:,:) | ||
real(kind=rk), | intent(inout), | allocatable | :: | left_pntVal(:,:) | Working array for the left and right point values |
|
real(kind=rk), | intent(inout), | allocatable | :: | right_pntVal(:,:) | ||
real(kind=rk), | intent(inout), | allocatable | :: | nodalNumFlux(:,:) | Working array for the nodal flux |
|
real(kind=rk), | intent(inout), | allocatable | :: | numFluxBuffer(:,:) | Working array for the modal numerical flux |