atl_modg_maxwellDivCor_kernel_module Module

Module for routines and datatypes of MOdal Discontinuous Galerkin (MODG) scheme. This scheme is a spectral scheme for linear, purley hyperbolic partial differential equation systems.


Uses

Used by

  • module~~atl_modg_maxwelldivcor_kernel_module~~UsedByGraph module~atl_modg_maxwelldivcor_kernel_module atl_modg_maxwellDivCor_kernel_module proc~compute_rhs_cubes_modg compute_rhs_cubes_modg proc~compute_rhs_cubes_modg->module~atl_modg_maxwelldivcor_kernel_module

Subroutines

public subroutine atl_modg_maxwellDivCor_numFlux(equation, facedata, scheme, poly_proj, material)

Calculate the numerical flux for Maxwell equation with hyperbolic divergence cleaning and MODG scheme

Arguments

Type IntentOptional Attributes Name
type(atl_Equations_type), intent(in) :: equation

The equation you solve.

type(atl_facedata_type), intent(inout) :: facedata

The face representation of the state.

type(atl_modg_scheme_type), intent(inout) :: scheme

Parameters of the modal dg scheme

type(ply_poly_project_type), intent(inout) :: poly_proj

Data for projection method

type(atl_material_type), intent(inout) :: material

Material description for the faces on the current level

public subroutine atl_modg_maxwellDivCor_physFlux_const(equation, res, state, iElem, iDir, penalizationData, poly_proj, material, nodal_data, nodal_GradData, nodal_res, ElemLength, scheme_min, scheme_current)

Calculate the physical flux for the MODG scheme and Maxwell equation with hyperbolic divergenc cleaning.

Arguments

Type IntentOptional Attributes Name
type(atl_Equations_type), intent(in) :: equation

The equation you solve.

real(kind=rk), intent(inout) :: res(:,:)

To store the resulting phy flux in modal form

real(kind=rk), intent(in), optional :: state(:,:)

The state of the equation

integer, intent(in) :: iElem

The current Element

integer, intent(in) :: iDir

The current Direction

type(atl_penalizationData_type), intent(inout) :: penalizationData

The penalization data

type(ply_poly_project_type), intent(inout) :: poly_proj

Poly project

type(atl_material_type), intent(inout) :: material

Material description for the faces on the current level

real(kind=rk), intent(in), optional :: nodal_data(:,:)

The state in nodal form

real(kind=rk), intent(in), optional :: nodal_GradData(:,:,:)
real(kind=rk), intent(inout) :: nodal_res(:,:)
real(kind=rk), intent(in) :: ElemLength

Length of the element

type(atl_scheme_type), intent(inout) :: scheme_min

The scheme information

type(atl_scheme_type), intent(inout) :: scheme_current

public subroutine atl_modg_maxwellDivCor_physFlux_NonConst(equation, res, state, iElem, iDir, penalizationData, poly_proj, material, nodal_data, nodal_GradData, nodal_res, ElemLength, scheme_min, scheme_current)

Calculate the physical flux for the MODG scheme and Maxwell equation with hyperbolic divergenc cleaning.

Arguments

Type IntentOptional Attributes Name
type(atl_Equations_type), intent(in) :: equation

The equation you solve.

real(kind=rk), intent(inout) :: res(:,:)

To store the resulting phy flux in modal form

real(kind=rk), intent(in), optional :: state(:,:)

The state of the equation

integer, intent(in) :: iElem

The current Element

integer, intent(in) :: iDir

The current Direction

type(atl_penalizationData_type), intent(inout) :: penalizationData

The penalization data

type(ply_poly_project_type), intent(inout) :: poly_proj

Poly project

type(atl_material_type), intent(inout) :: material

Material description for the faces on the current level

real(kind=rk), intent(in), optional :: nodal_data(:,:)

The state in nodal form

real(kind=rk), intent(in), optional :: nodal_GradData(:,:,:)
real(kind=rk), intent(inout) :: nodal_res(:,:)
real(kind=rk), intent(in) :: ElemLength

Length of the element

type(atl_scheme_type), intent(inout) :: scheme_min

The scheme information

type(atl_scheme_type), intent(inout) :: scheme_current

private subroutine compute_physFluxDivCor(nDofs, nScalars, gam, chi, state_der, state, rot, inv_mu, inv_epsi)

Compute the physical flux in x direction. For other directions a properly defined variable permutation can be used. This routine covers only constant material parameters.

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nDofs

dimensions

integer, intent(in) :: nScalars

dimensions

real(kind=rk), intent(in) :: gam
real(kind=rk), intent(in) :: chi
real(kind=rk), intent(inout) :: state_der(nDofs,nScalars)

Array to store the fluxes in.

real(kind=rk), intent(in) :: state(nDofs,nScalars)

State to compute the fluxes from.

integer, intent(in) :: rot(8)

Rotationing to index the variables.

real(kind=rk), intent(in) :: inv_mu
real(kind=rk), intent(in) :: inv_epsi

private subroutine compute_physFluxDivCor_nonConst(nDofs, nScalars, nquadpoints, state_der, state, rot, material, poly_proj, modalCoeffs, nodalPhysFlux, pointVal, iElem, nElems)

Compute the physical flux in x direction. For other directions a properly defined variable permutation can be used. This routine covers non-constant material parameters.

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nDofs

dimensions

integer, intent(in) :: nScalars

dimensions

integer, intent(in) :: nquadpoints

dimensions

real(kind=rk), intent(inout) :: state_der(nDofs,nScalars)

Array to store the fluxes in.

real(kind=rk), intent(in) :: state(nDofs,nScalars)

State to compute the fluxes from.

integer, intent(in) :: rot(8)

Rotationing to index the variables.

real(kind=rk), intent(in) :: material(nElems,nDofs,4)

Material parameters (mu, epsilon) for all elements

type(ply_poly_project_type), intent(inout) :: poly_proj

Data for projection method

real(kind=rk), intent(inout) :: modalCoeffs(:,:)

Working array for modal coefficients of the current element in the loop.

real(kind=rk), intent(inout) :: nodalPhysFlux(:,:)

Working array for nodal representation of the physical flux along the 3 spatial directions.

real(kind=rk), intent(inout) :: pointVal(:,:)

Working array for nodal representation of the polynomial with in each cell.

integer, intent(in) :: iElem
integer, intent(in) :: nElems

Number of elements.