Estimate the impact of viscous terms in 3D.
We use an estimate for mu(dv/dx) from the deviations and derivative estimates of the conservative variables: dm/dx = dv/dx * rho + drho/dx * v dv/dx = (dm/dx - drho/dx * v)/rho dv/dx < (max(dm/dx) - max(drho/dx) * max(v))/min(rho) dv/dx < (max(dm/dx) * min(rho) - max(drho/dx) * max(m) ) / min(rho)*2
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(atl_navierStokes_type), | intent(in) | :: | nvrstk | Description of the equation |
||
real(kind=rk), | intent(in) | :: | mean(:) | The mean of each state variable. |
||
real(kind=rk), | intent(in) | :: | deviation(:) | Estimation of maximal deviation of each state. |
||
real(kind=rk), | intent(in) | :: | grad(:) | Estimation of maximal gradient of each state. |
Resulting indication whether viscous terms can be neglected.
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
real(kind=rk), | private | :: | rho_min | ||||
real(kind=rk), | private | :: | m_max | ||||
real(kind=rk), | private | :: | grad_mag |