! Copyright (c) 2012, 2014 Jens Zudrop <j.zudrop@grs-sim.de> ! Copyright (c) 2016 Tobias Girresser <tobias.girresser@student.uni-siegen.de> ! Copyright (c) 2017 Neda Ebrahimi Pour <neda.epour@uni-siegen.de> ! ! Permission to use, copy, modify, and distribute this software for any ! purpose with or without fee is hereby granted, provided that the above ! copyright notice and this permission notice appear in all copies. ! ! THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES ! WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ! ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES ! WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ! ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF ! OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ! **************************************************************************** ! !> author: Jens Zudrop !! Collects all functions related to the physical fluxes of the Euler equations. module atl_physFluxEuler_2d_module ! Treelm modules use env_module, only: rk implicit none private public :: atl_physFluxEuler_2d contains !> Physical flux calculation along x direction for Euler equation. function atl_physFluxEuler_2d(state, isenCoeff, penalty_char, porosity, U_o) result(physFlux) ! ------------------------------------------------------------------------------------ !> The state in nodal space. Dimension is the number of vars, i.e. 5 for Euler real(kind=rk), intent(in) :: state(:) !> Adiabatice index, also known as isentropic expansion factor. real(kind=rk), intent(in) :: isenCoeff !> The value of the characteristic function (stemming from penalization) real(kind=rk), intent(in) :: penalty_char !> The porosity at the current point real(kind=rk), intent(in) :: porosity !> Velocity of the obstacle real(kind=rk), intent(in) :: U_o !> The physical flux along the x axis for all variables real(kind=rk), allocatable :: physFlux(:) ! ------------------------------------------------------------------------------------ real(kind=rk) :: pressure, velocity(1:2) ! ------------------------------------------------------------------------------------ ! allocate the memory for the output allocate(physFlux(4)) ! calculate pressure pressure = (isenCoeff-1.0_rk) * ( & & state(4) - 0.5_rk*(sum(state(2:3)**2))/state(1) & & ) !> @todo JZ: here, we devide by a polynomial, we should be careful! We are leaving !! the polynomial space here! velocity(1:2) = state(2:3)/state(1) ! calculate the nonlinear term for different varibales now, for the first component consider ! also the velocity of the obstacle. ! ... density physFlux(1) = state(2) + ((1.0_rk/porosity)-1.0_rk)*penalty_char * (velocity(1)-U_o) * state(1) ! ... x-velocity physFlux(2) = pressure + state(2)*velocity(1) ! ... y-velocity physFlux(3) = state(2)*velocity(2) ! ... total energy physFlux(4) = velocity(1) * ( state(4) + pressure ) end function atl_physFluxEuler_2d end module atl_physFluxEuler_2d_module