Evaluate all 1D Legendre polynomials at a given set of points up to the given degree.
init the first two Legendre polynomials. ... the first Legendre polynomial is 1
... the second Legendre polynomial is x Recursive polynomial evaluation: \f$ n L_{n}(x)= (2n - 1) x L_{n-1}(x) - (n-1)L_{n-2}(x) \f$
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=rk), | intent(in) | :: | points(:) | 1D points to evaluate. |
||
integer, | intent(in) | :: | degree | Degree up to which to evaluate the polynomials |
Resulting vector of all mode values at all points
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
integer, | private | :: | iDegree | ||||
real(kind=rk), | private | :: | n_q |