! Copyright (c) 2012-2013, 2019 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2013-2014, 2022 Harald Klimach <harald.klimach@dlr.de> ! Copyright (c) 2016 Tobias Girresser <tobias.girresser@student.uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ****************************************************************************** !> author: Kannan Masilamani !! This module contains spacer definition and routines related to spacers ! Copyright (c) 2012-2013 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2012 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2012-2016 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2012, 2015-2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2013 Daniel Harlacher <d.harlacher@grs-sim.de> ! Copyright (c) 2014 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2014 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2015-2017 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2015-2016 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Daniel Fleischer <daniel.fleischer@student.uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2017 Daniel PetrĂ³ <daniel.petro@student.uni-siegen.de> ! ! Parts of this file were written by Harald Klimach, Simon Zimny and Manuel ! Hasert for German Research School for Simulation Sciences GmbH. ! ! Parts of this file were written by Harald Klimach, Kannan Masilamani, ! Daniel Harlacher, Kartik Jain, Verena Krupp, Jiaxing Qi, Peter Vitt, ! Daniel Fleischer, Tobias Girresser and Daniel PetrĂ³ for University Siegen. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! This file contains the source code for growing and dynamic arrays. ! This is used for arrays of primitives (int, long_int, real, ...) as well as ! for arrays of derived datatypes (tem_variable_type,...). ! ! To use these macros include the following to your source file. ! ! Smart growing array (GA) for ?tstring? ! Growing Arrays: ! ! declaration ! ! ! implementation ! ! ----------------------------------------------------------------- ! 2d Array, which can grow in second dimension only (GA2d) ! tname ... indicates type of dynamic array (long, int, real, ...) ! !------------------------------------------------------------------------------ ! ! dynamic Arrays: ! ! declaration ! ! ! implementation ! module sdr_spacer_module use env_module, only: rk, minLength, zeroLength use tem_param_module, only: PI use tem_aux_module, only: tem_abort use tem_logging_module, only: logunit use tem_cylinder_module, only: tem_cylinder_type, & & tem_load_cylinder, & & grw_cylinderArray_type use tem_sphere_module, only: tem_sphere_type, tem_sphereCubeOverlap use tem_cube_module, only: tem_cube_type use tem_transformation_module, only: tem_transformation_type use aotus_module, only: flu_State, aot_get_val, & & aoterr_Fatal, aoterr_NonExistent, & & aoterr_WrongType use aot_table_module, only: aot_table_open, aot_table_close, & & aot_table_length use sdr_cylinder_module, only: append_cylinder2SpaObj use sdr_spatialObj_module, only: grw_spatialObjArray_type, & & sdr_spatialObj_type, append, & & spacerInterwoven, cylinder implicit none private public :: grw_spacerInterwovenArray_type public :: init, append, truncate, destroy, empty, placeAt public :: sdr_spacer_type, sdr_load_spacer public :: sdr_spacerInterwovenCubeOverlap !> This type provides spacer length and width information type spacer_filament_type !> cylinder typ type(tem_cylinder_type) :: cylinder !> spacer filament gab/distance between two parallel filament in length or width real(kind=rk) :: filament_gap !> number of filaments in length or width. Calculated by !! cylinder length/filament gab integer :: nrFilament !> unitNormal of the cylinder vector. needed for spacer !! filament offset direction. real(kind=rk) :: unitNormal(3) end type spacer_filament_type !> This type provides information to !! create spacer geometry type sdr_spacer_type type(spacer_filament_type) :: length !< length of the spacer type(spacer_filament_type) :: width !< width of the spacer !> direction of height computed by cross product of length and width !! normal real(kind=rk) :: h_normal(3) logical :: interwoven !< choose between interwoven and non-interwoven spacer end type sdr_spacer_type !> This type provides information to create each interwoven spacer filament type sdr_spacerInterwoven_type !> cylinder contains origin and vector defining magnitude and direction !! of the filament type(tem_cylinder_type) :: cylinder !> number of sin period in length or width real(kind=rk) :: nrPeriod !> direction of height computed by cross product of length and width !! normal real(kind=rk) :: h_normal(3) integer :: shiftSin !< shift sinus period for interwoven spacer end type sdr_spacerInterwoven_type !> growing array type for type(sdr_spacerinterwoven_type) type grw_spacerinterwovenarray_type integer :: nvals = 0 integer :: containersize = 0 type(sdr_spacerinterwoven_type), allocatable :: val(:) end type !> initialize the dynamic array interface init module procedure init_ga_spacerinterwoven end interface !> truncate the array, meaning !! cut off the trailing empty entries interface truncate module procedure truncate_ga_spacerinterwoven end interface !> empty the entries without changing arrays interface empty module procedure empty_ga_spacerinterwoven end interface !> destroy the dynamic array interface destroy module procedure destroy_ga_spacerinterwoven end interface !> insert an element at a given position interface placeat module procedure placeat_ga_spacerinterwoven module procedure placeat_ga_spacerinterwoven_vec end interface !> append a value to the dynamic array !! and return its position. interface append module procedure append_ga_spacerinterwoven module procedure append_ga_spacerinterwoven_vec end interface !> increase the size of the container !! for the array. interface expand module procedure expand_ga_spacerinterwoven end interface contains ! **************************************************************************** !> \brief Loading spacer information from config file \n subroutine sdr_load_spacer(sprInterwovenArray, cylArray, spaObjArray, attr_pos,& & transform, conf, thandle ) ! ---------------------------------------------------------------------------! !inferface variables !> growing array of spacers type(grw_spacerInterwovenArray_type), intent(inout) :: sprInterwovenArray !> growing array of cylinders type(grw_cylinderArray_type), intent(inout) :: cylArray !> growing array of geometrical objects. type( grw_spatialObjArray_type), intent(inout) :: spaObjArray !> Position of the attribute to connect this object to. integer, intent(in) :: attr_pos !> transformation for spatial object type(tem_transformation_type), intent(in) :: transform !> lua state type(flu_state) :: conf integer, intent(in) :: thandle !< handle for canonical objects ! --------------------------------------------------------------------------! ! local varaibles integer :: spr_handle, spr_subHandle integer :: iObj, nObjects ! --------------------------------------------------------------------------! write(logunit(2),*) 'Loading spacer: ' call aot_table_open(L = conf, parent = thandle, thandle = spr_handle, & & key = 'object') call aot_table_open(L=conf, parent = spr_handle, thandle = spr_subHandle, & & pos = 1 ) if ( spr_subHandle .eq. 0) then !object is a single table call aot_table_close(L=conf, thandle=spr_subHandle) call sdr_load_spacer_single(sprInterwovenArray, cylArray, spaObjArray, & & attr_pos, transform, conf, spr_handle) else !object is a multiple table call aot_table_close(L=conf, thandle=spr_subHandle) nObjects = aot_table_length(L=conf, thandle=spr_handle) do iObj=1,nObjects call aot_table_open(L=conf, parent=spr_handle, thandle=spr_suBHandle,& & pos=iObj) call sdr_load_spacer_single(sprInterwovenArray, cylArray, spaObjArray, & & attr_pos, transform, conf, spr_Subhandle) call aot_table_close(L=conf, thandle=spr_subHandle) end do end if call aot_table_close(L=conf, thandle=spr_Handle) end subroutine sdr_load_spacer ! ****************************************************************************** ! ****************************************************************************** !> This routine single spacer from object table subroutine sdr_load_spacer_single(sprInterwovenArray, cylArray, spaObjArray, & & attr_pos, transform, conf, thandle ) ! ---------------------------------------------------------------------------! !inferface variables !> growing array of spacers type(grw_spacerInterwovenArray_type), intent(inout) :: sprInterwovenArray !> growing array of cylinders type(grw_cylinderArray_type), intent(inout) :: cylArray !> growing array of geometrical objects. type( grw_spatialObjArray_type), intent(inout) :: spaObjArray !> Position of the attribute to connect this object to. integer, intent(in) :: attr_pos !> transformation for spatial object type(tem_transformation_type), intent(in) :: transform !> lua state type(flu_state) :: conf integer, intent(in) :: thandle !< handle for canonical objects ! --------------------------------------------------------------------------! integer :: iError type(sdr_spacer_type) :: loc_spacer ! --------------------------------------------------------------------------! !load spacer length table write(logunit(2),*) ' Spacer filament length' call load_spacer_filament( me = loc_spacer%length, conf = conf, & & thandle = thandle, transform = transform, & & key = 'length' ) !load spacer width table write(logunit(2),*) ' Spacer filament width' call load_spacer_filament( me = loc_spacer%width, conf = conf, & & thandle = thandle, transform = transform, & & key = 'width' ) ! read interwoven logical to switch between ! interwoven and non-interwoven spacers call aot_get_val(L=conf, thandle=thandle, & & val=loc_spacer%interwoven, ErrCode=iError, & & key='interwoven', default=.false.) write(logunit(2),*) ' interwoven:', loc_spacer%interwoven if(loc_spacer%interwoven) then !interwoven spacer !compute height normal loc_spacer%h_normal(1) = loc_spacer%width%unitNormal(2) & & * loc_spacer%length%unitNormal(3) & & - loc_spacer%width%unitNormal(3) & & * loc_spacer%length%unitNormal(2) loc_spacer%h_normal(2) = loc_spacer%width%unitNormal(3) & & * loc_spacer%length%unitNormal(1) & & - loc_spacer%width%unitNormal(1) & & * loc_spacer%length%unitNormal(3) loc_spacer%h_normal(3) = loc_spacer%width%unitNormal(1) & & * loc_spacer%length%unitNormal(2) & & - loc_spacer%width%unitNormal(2) & & * loc_spacer%length%unitNormal(1) loc_spacer%h_normal = loc_spacer%h_normal& & /sqrt(dot_product(loc_spacer%h_normal, & & loc_spacer%h_normal)) write(logunit(2),*) ' height normal: ', loc_spacer%h_normal !Filaments in length call append_spacerInterwoven(sprInterwovenArray = sprInterwovenArray, & & spaObjArray = spaObjArray, & & attr_pos = attr_pos, & & filament_cur = loc_spacer%length, & & filament_adj = loc_spacer%width, & & h_normal = loc_spacer%h_normal, & & shiftSin = 1) !filaments in width call append_spacerInterwoven(sprInterwovenArray = sprInterwovenArray, & & spaObjArray = spaObjArray, & & attr_pos = attr_pos, & & filament_cur = loc_spacer%width, & & filament_adj = loc_spacer%length, & & h_normal = loc_spacer%h_normal, & & shiftSin = 0) else !non-interwoven spacer are treated as cylinders !Filaments in length call append_spacerNonInterwoven(cylArray = cylArray, & & spaObjArray = spaObjArray, & & attr_pos = attr_pos, & & filament_cur = loc_spacer%length, & & filament_adj = loc_spacer%width) !filaments in width call append_spacerNonInterwoven(cylArray = cylArray, & & spaObjArray = spaObjArray, & & attr_pos = attr_pos, & & filament_cur = loc_spacer%width, & & filament_adj = loc_spacer%length) endif end subroutine sdr_load_spacer_single ! **************************************************************************** ! **************************************************************************** !> This routine load the spacer filament type information for both length !! and width ! **************************************************************************** subroutine load_spacer_filament(me, conf, thandle, transform, key ) ! ---------------------------------------------------------------------------! !inferface variables type(spacer_filament_type), intent(out) :: me !< spacer data type type(flu_state) :: conf !< flu state integer, intent(in) :: thandle !< parent handle !> transformation for spatial object type(tem_transformation_type), intent(in) :: transform character(len=*) :: key !< length or width to load from config ! ---------------------------------------------------------------------------! !local variable integer :: orig_handle integer :: iError real(kind=rk) :: length ! ---------------------------------------------------------------------------! !open length table for spacer length, axis and gap between two parallel !filament call aot_table_open(L=conf, parent=thandle, thandle=orig_handle, & & key=trim(key)) call tem_load_cylinder(me = me%cylinder, & & conf = conf, & & thandle = orig_handle, & & transform = transform ) !read gap between two parallel filament in length call aot_get_val(L=conf, thandle=orig_handle, & & val=me%filament_gap, ErrCode=iError, key='filament_gap') if (btest(iError, aoterr_Fatal)) then write(logunit(0),*) & & 'FATAL Error occured, while retrieving spacer'//trim(key)//', gap :' if (btest(iError, aoterr_NonExistent)) & & write(logunit(0),*) 'Variable not existent!' if (btest(iError, aoterr_WrongType)) & & write(logunit(0),*) 'Variable has wrong type!' call tem_abort() end if call aot_table_close(L=conf,thandle=orig_handle) ! compute total number of filament length=sqrt(dot_product(me%cylinder%vec, me%cylinder%vec)) me%nrFilament = nint(length/me%filament_gap) !compute unit normal me%unitNormal = me%cylinder%vec/length write(logunit(2),*) ' gap: ', me%filament_gap write(logunit(2),*) ' nrFilament: ', me%nrFilament end subroutine load_spacer_filament ! ****************************************************************************** !> This routine converts sdr_spacer_type to spacerInterwoven_type for !! as each filament and add it to the growing array of spacerInterwoven_type subroutine append_spacerNonInterwoven(cylArray, spaObjArray, attr_pos, & & filament_cur, filament_adj) ! ---------------------------------------------------------------------------! !inferface variables !> growing array of cylinders type(grw_cylinderArray_type), intent(inout) :: cylArray !> growing array of geometrical objects. type( grw_spatialObjArray_type), intent(inout) :: spaObjArray !> Position of the attribute to connect this object to. integer, intent(in) :: attr_pos type(spacer_filament_type), intent(in) :: filament_cur !< current filament type(spacer_filament_type), intent(in) :: filament_adj !< adjacent filament ! ---------------------------------------------------------------------------! type(tem_cylinder_type) :: loc_cylinder integer :: nrs ! ---------------------------------------------------------------------------! do nrs = 1,filament_adj%nrFilament !origin of each filament loc_cylinder%origin = filament_cur%cylinder%origin + & & ( nrs - 1.0_rk )*filament_adj%filament_gap& & * filament_adj%unitNormal !radius loc_cylinder%radius = filament_cur%cylinder%radius !vec loc_cylinder%vec = filament_cur%cylinder%vec !only_surface loc_cylinder%only_surface = filament_cur%cylinder%only_surface !append each filament to growing array call append_cylinder2SpaObj( cylArray, spaObjArray, attr_pos, & & loc_cylinder) enddo end subroutine append_spacerNonInterwoven ! ****************************************************************************** !> This routine converts sdr_spacer_type to spacerInterwoven_type for !! as each filament and add it to the growing array of spacerInterwoven_type subroutine append_spacerInterwoven(sprInterwovenArray, spaObjArray, attr_pos, & & filament_cur, filament_adj, shiftSin, & & h_normal) ! ---------------------------------------------------------------------------! !inferface variables !> growing array of spacers type(grw_spacerInterwovenArray_type), intent(inout) :: sprInterwovenArray !> growing array of geometrical objects. type( grw_spatialObjArray_type), intent(inout) :: spaObjArray !> Position of the attribute to connect this object to. integer, intent(in) :: attr_pos type(spacer_filament_type), intent(in) :: filament_cur !< current filament type(spacer_filament_type), intent(in) :: filament_adj !< adjacent filament integer, intent(in) :: shiftSin !< shift sinus period for interwoven spacer real(kind=rk), intent(in) :: h_normal(3) !< normal direction for height ! ---------------------------------------------------------------------------! integer :: nrs type(sdr_spacerInterwoven_type) :: loc_spacerInterwoven type( sdr_spatialObj_type ) :: spatialObj ! ---------------------------------------------------------------------------! !append spacer to spacer array spatialObj%attribute_position = attr_pos spatialObj%geometry_primitive = spacerInterwoven !convert loc_spacer to spacerInterwoven_type and !add it to growing array of interwoven spacer do nrs = 1, filament_adj%nrFilament !origin of each filament loc_spacerInterwoven%cylinder%origin = & & filament_cur%cylinder%origin + & & ( nrs - 1.0_rk )*filament_adj%filament_gap & & * filament_adj%unitNormal !radius loc_spacerInterwoven%cylinder%radius = filament_cur%cylinder%radius !vec loc_spacerInterwoven%cylinder%vec = filament_cur%cylinder%vec !only_surface loc_spacerInterwoven%cylinder%only_surface = filament_cur%cylinder%only_surface !h_normal loc_spacerInterwoven%h_normal = h_normal !shiftsin loc_spacerInterwoven%shiftSin = mod(nrs-shiftSin,2) ! number of sine period loc_spacerInterwoven%nrPeriod =0.5_rk*filament_cur%nrFilament !append each filament to growing array call append( sprInterwovenArray, loc_spacerInterwoven ) spatialObj%primitive_position = sprInterwovenArray%nVals !add spatialObj to spatialObj list call append(spaObjArray, spatialObj) enddo end subroutine append_spacerInterwoven ! **************************************************************************** !> summary: This function checks intesection of solid cube and spacer interwoven function sdr_spacerInterwovenCubeOverlap(spacerInterwoven, cube) & & result(overlap) ! ---------------------------------------------------------------------------! !inferface variables !> spacer geometry data type(sdr_spacerInterwoven_type), intent(in) :: spacerInterwoven type(tem_cube_type), intent(in) :: cube logical :: overlap !< return value ! ---------------------------------------------------------------------------! real(kind=rk) :: proj integer :: iVer type(tem_sphere_type) :: sphere real(kind=rk) :: cubeVer(15,3) ! ---------------------------------------------------------------------------! overlap = .false. !compute cube vertices for spacer since it need to check !vertices !!@note KM: we check for all vertices to find if any of the cube vertices !! intersect with cylinder cubeVer(1,:) = cube%center cubeVer(2,:) = cube%center + [ cube%halfwidth, 0.0_rk, 0.0_rk] cubeVer(3,:) = cube%center + [-cube%halfwidth, 0.0_rk, 0.0_rk] cubeVer(4,:) = cube%center + [0.0_rk, cube%halfwidth, 0.0_rk] cubeVer(5,:) = cube%center + [0.0_rk, -cube%halfwidth, 0.0_rk] cubeVer(6,:) = cube%center + [0.0_rk, 0.0_rk, cube%halfwidth] cubeVer(7,:) = cube%center + [0.0_rk, 0.0_rk, -cube%halfwidth] cubeVer(8,:) = cube%origin cubeVer(9,:) = cube%origin + [cube%extent, 0.0_rk, 0.0_rk] cubeVer(10,:) = cube%origin + [0.0_rk, cube%extent, 0.0_rk] cubeVer(11,:) = cube%origin + [0.0_rk, 0.0_rk, cube%extent] cubeVer(12,:) = cube%origin + [cube%extent, cube%extent, 0.0_rk] cubeVer(13,:) = cube%origin + [cube%extent, 0.0_rk, cube%extent] cubeVer(14,:) = cube%origin + [0.0_rk, cube%extent, cube%extent] cubeVer(15,:) = cube%origin + [cube%extent, cube%extent, cube%extent] sphere%radius = spacerInterwoven%cylinder%radius sphere%only_surface = spacerInterwoven%cylinder%only_surface do iVer=1,15 proj = dot_product( (cubever(iVer,:)-spacerInterwoven%cylinder%origin), & & spacerInterwoven%cylinder%vec) & & / dot_product(spacerInterwoven%cylinder%vec, spacerInterwoven%cylinder%vec) !check if projected point on cylinderis within cylinder length if ( proj .ge. 0.0_rk .and. proj .lt. 1.0_rk ) then sphere%origin = spacerInterwoven%cylinder%origin & & + proj*spacerInterwoven%cylinder%vec & !interwoven function & + sin(2.0_rk*PI*proj*spacerInterwoven%nrPeriod & & + PI*spacerInterwoven%shiftSin) & & * spacerInterwoven%cylinder%radius & & * spacerinterwoven%h_normal overlap = tem_sphereCubeOverlap(sphere, cube) if( overlap ) return endif enddo end function sdr_spacerInterwovenCubeOverlap ! **************************************************************************** subroutine init_ga_spacerinterwoven(me, length) type(grw_spacerinterwovenarray_type), intent(out) :: me !< dynamic array to init integer, intent(in), optional :: length !< initial length of the container if (present(length)) then me%containersize = length else me%containersize = zerolength end if ! deallocate ... if( allocated( me%val )) & deallocate(me%val) ! ... and reallocate allocate(me%val(me%containersize)) me%nvals = 0 end subroutine init_ga_spacerinterwoven subroutine destroy_ga_spacerinterwoven(me) type(grw_spacerinterwovenarray_type), intent(inout) :: me !< dynamic array to destroy me%containersize = 0 me%nvals = 0 if( allocated( me%val ) ) deallocate(me%val) end subroutine destroy_ga_spacerinterwoven subroutine truncate_ga_spacerinterwoven(me) !------------------------------------------------------------------------ type(grw_spacerinterwovenarray_type) :: me !< array to truncate !------------------------------------------------------------------------ type(sdr_spacerinterwoven_type), allocatable :: tarray(:) !------------------------------------------------------------------------ integer :: ii !------------------------------------------------------------------------ ! nothing to do if container size is not larger than the number of values ! in the array. if (me%containersize > me%nvals) then allocate(tarray(me%nvals)) do ii = 1, me%nvals tarray(ii) = me%val(ii) end do call move_alloc(tarray, me%val) me%containersize = me%nvals end if end subroutine truncate_ga_spacerinterwoven subroutine empty_ga_spacerinterwoven(me) !------------------------------------------------------------------------ type(grw_spacerinterwovenarray_type) :: me !< array to sorttruncate !------------------------------------------------------------------------ me%nvals = 0 end subroutine empty_ga_spacerinterwoven !> adds the value to a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! element at the requested position will be replaced. subroutine placeat_ga_spacerinterwoven(me, val, pos, length) type(grw_spacerinterwovenarray_type) :: me !< array to place the value into type(sdr_spacerinterwoven_type), intent(in) :: val !< value to place at the given position integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (pos > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = pos, length = length) end if me%nvals = max( pos, me%nvals ) me%val(pos) = val end subroutine placeat_ga_spacerinterwoven !> adds the values starting from a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! elements starting from the requested position will be replaced up to !! the element at position `pos + size(val) - 1`. subroutine placeat_ga_spacerinterwoven_vec(me, val, pos, length) type(grw_spacerinterwovenarray_type) :: me !< array to append the value to type(sdr_spacerinterwoven_type), intent(in) :: val(:) !< values to append integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length integer :: ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if ub = pos + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = pos, ub me%val(ii) = val(1+ii-pos) end do end subroutine placeat_ga_spacerinterwoven_vec subroutine append_ga_spacerinterwoven(me, val, length) type(grw_spacerinterwovenarray_type) :: me !< array to append the value to type(sdr_spacerinterwoven_type), intent(in) :: val !< value to append !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (me%nvals+1 > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, length = length) end if me%nvals = me%nvals+1 me%val(me%nvals) = val end subroutine append_ga_spacerinterwoven subroutine append_ga_spacerinterwoven_vec(me, val, length) type(grw_spacerinterwovenarray_type) :: me !< array to append the value to type(sdr_spacerinterwoven_type), intent(in) :: val(:) !< values to append !> optional length to expand the array integer, intent(in), optional :: length integer :: lb, ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if lb = me%nvals + 1 ub = lb + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = lb, ub me%val(ii) = val(1+ii-lb) end do end subroutine append_ga_spacerinterwoven_vec subroutine expand_ga_spacerinterwoven(me, pos, length) type(grw_spacerinterwovenarray_type) :: me !< array to resize integer, intent(in), optional :: pos !< optional predefined position !> optional length to expand the array integer, intent(in), optional :: length type(sdr_spacerinterwoven_type), allocatable :: swpval(:) integer :: explen, ii explen = 0 ! increase the container by the requested length of double it if( present(length) ) then explen = max( length, minlength ) else ! set the global minimum length, if doubling would be smaller than that explen = max(me%containersize, minlength) end if ! if a position is given, increase the container to at least the size to ! fit the position. if( present(pos) ) explen = max(explen, pos-me%containersize) ! if the current size plus explen exceeds the max container size, ! reduce the size to the max container size. if( (huge(me%containersize) - explen) <= me%containersize) then ! set max container size me%containersize = huge(me%containersize) else ! set the new container size me%containersize = me%containersize + explen end if if ( me%nvals > 0 ) then allocate(swpval(me%containersize)) do ii = 1, me%nvals swpval(ii) = me%val(ii) end do call move_alloc( swpval, me%val ) else ! me%nvals == 0 if ( allocated(me%val) ) deallocate( me%val ) allocate( me%val(me%containersize) ) end if end subroutine expand_ga_spacerinterwoven end module sdr_spacer_module !> \page spacers Spacers !! Spacers are defined by an two spacer filaments one along the length and !! other along the width. Each spacer filament is defined by the \ref cylinders !! and distance between consecutive spacer filaments !! !! Valid definition: !!\verbatim !! geometry={ !! kind='spacer', !! object={ !! length={ !! origin = {0.0,0.0,0.0}, -- starting point of the spacer !! vec = {1.0,0.0,0.0}, -length and axis of first filament !! radius = 0.001 -- radius of the filament !! only_surface = true, -- If not defined default is set to false !! filament_gap = 0.02, -- distance between filament !! }, !! width={ !! origin = {0.0,0.0,0.0} !! vec = {0.0,0.0,1.0}, !! radius = 0.001, !! only_surface = true, -- If not defined default is set to false !! filament_gap = 0.02, !! }, !! interwoven = true, --switch between interwoven and non-interwoven !! -- spacer generation !! } !! } -- single spacer !!\endverbatim !! The following seeder file is to generate mesh with spacer !! inside: !! \include testsuite/spacer/seeder.lua !! \n\n !! Mesh generated with above seeder file: !! \image html sdr_spacer.png !! Example lua file is available at \link testsuite/spacer/seeder.lua !! \example testsuite/spacer/seeder.lua