! Copyright (c) 2012, 2022 Harald Klimach <harald.klimach@dlr.de> ! Copyright (c) 2012 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2012, 2016 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! Copyright (c) 2012-2013 Simon Zimny <s.zimny@grs-sim.de> ! Copyright (c) 2012 Manuel Hasert <m.hasert@grs-sim.de> ! Copyright (c) 2012-2016 Harald Klimach <harald.klimach@uni-siegen.de> ! Copyright (c) 2012, 2015-2016 Kannan Masilamani <kannan.masilamani@uni-siegen.de> ! Copyright (c) 2013 Daniel Harlacher <d.harlacher@grs-sim.de> ! Copyright (c) 2014 Kartik Jain <kartik.jain@uni-siegen.de> ! Copyright (c) 2014 Verena Krupp <verena.krupp@uni-siegen.de> ! Copyright (c) 2015-2017 Jiaxing Qi <jiaxing.qi@uni-siegen.de> ! Copyright (c) 2015-2016 Peter Vitt <peter.vitt2@uni-siegen.de> ! Copyright (c) 2016 Daniel Fleischer <daniel.fleischer@student.uni-siegen.de> ! Copyright (c) 2016 Tobias Schneider <tobias1.schneider@student.uni-siegen.de> ! Copyright (c) 2017 Daniel PetrĂ³ <daniel.petro@student.uni-siegen.de> ! ! Parts of this file were written by Harald Klimach, Simon Zimny and Manuel ! Hasert for German Research School for Simulation Sciences GmbH. ! ! Parts of this file were written by Harald Klimach, Kannan Masilamani, ! Daniel Harlacher, Kartik Jain, Verena Krupp, Jiaxing Qi, Peter Vitt, ! Daniel Fleischer, Tobias Girresser and Daniel PetrĂ³ for University Siegen. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are met: ! ! 1. Redistributions of source code must retain the above copyright notice, this ! list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright notice, ! this list of conditions and the following disclaimer in the documentation ! and/or other materials provided with the distribution. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ! DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE ! FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! This file contains the source code for growing and dynamic arrays. ! This is used for arrays of primitives (int, long_int, real, ...) as well as ! for arrays of derived datatypes (tem_variable_type,...). ! ! To use these macros include the following to your source file. ! ! Smart growing array (GA) for ?tstring? ! Growing Arrays: ! ! declaration ! ! ! implementation ! ! ----------------------------------------------------------------- ! 2d Array, which can grow in second dimension only (GA2d) ! tname ... indicates type of dynamic array (long, int, real, ...) ! !------------------------------------------------------------------------------ ! ! dynamic Arrays: ! ! declaration ! ! ! implementation ! !> Module to describe geometrical objects in Seeder. !! !! The sdr_spatialObj_type is used to build up a list of all geometric objects !! to be considered in the mesh generation. !! They serve as a pointer to more detailed descriptions of the actual !! geometrical representation. module sdr_spatialObj_module use env_module, only: minLength, zeroLength implicit none private public :: grw_spatialObjArray_type, sdr_spatialObj_type public :: init, append, truncate, destroy, empty, placeat ! Identifiers for supported geometric primitives integer, parameter, public :: point = 1 integer, parameter, public :: line = 2 integer, parameter, public :: triangle = 3 integer, parameter, public :: box = 4 integer, parameter, public :: periodicPlane = 5 integer, parameter, public :: sphere= 6 integer, parameter, public :: cylinder = 7 integer, parameter, public :: spacerInterwoven = 8 integer, parameter, public :: ellipsoid= 9 !> This data type describes a geometric object generically. !! !! It is used to build a list of all objects that are to be checked for !! intersection and provides a uniform access to them. !! In the tree nodes a single integer index is then sufficient to identify !! the intersected object. type sdr_spatialObj_type !> Position of the attribute in the list of attributes, this object should !! be attached to. integer :: attribute_position !> What kind of geometric primitive is this object? !! !! Supported are: !! 1. point !! 2. line !! 3. triangle !! 4. box integer :: geometry_primitive !> Position in the list of correspoding primitive. integer :: primitive_position end type sdr_spatialObj_type !> growing array type for type(sdr_spatialobj_type) type grw_spatialobjarray_type integer :: nvals = 0 integer :: containersize = 0 type(sdr_spatialobj_type), allocatable :: val(:) end type !> initialize the dynamic array interface init module procedure init_ga_spatialobj end interface !> truncate the array, meaning !! cut off the trailing empty entries interface truncate module procedure truncate_ga_spatialobj end interface !> empty the entries without changing arrays interface empty module procedure empty_ga_spatialobj end interface !> destroy the dynamic array interface destroy module procedure destroy_ga_spatialobj end interface !> insert an element at a given position interface placeat module procedure placeat_ga_spatialobj module procedure placeat_ga_spatialobj_vec end interface !> append a value to the dynamic array !! and return its position. interface append module procedure append_ga_spatialobj module procedure append_ga_spatialobj_vec end interface !> increase the size of the container !! for the array. interface expand module procedure expand_ga_spatialobj end interface contains subroutine init_ga_spatialobj(me, length) type(grw_spatialobjarray_type), intent(out) :: me !< dynamic array to init integer, intent(in), optional :: length !< initial length of the container if (present(length)) then me%containersize = length else me%containersize = zerolength end if ! deallocate ... if( allocated( me%val )) & deallocate(me%val) ! ... and reallocate allocate(me%val(me%containersize)) me%nvals = 0 end subroutine init_ga_spatialobj subroutine destroy_ga_spatialobj(me) type(grw_spatialobjarray_type), intent(inout) :: me !< dynamic array to destroy me%containersize = 0 me%nvals = 0 if( allocated( me%val ) ) deallocate(me%val) end subroutine destroy_ga_spatialobj subroutine truncate_ga_spatialobj(me) !------------------------------------------------------------------------ type(grw_spatialobjarray_type) :: me !< array to truncate !------------------------------------------------------------------------ type(sdr_spatialobj_type), allocatable :: tarray(:) !------------------------------------------------------------------------ integer :: ii !------------------------------------------------------------------------ ! nothing to do if container size is not larger than the number of values ! in the array. if (me%containersize > me%nvals) then allocate(tarray(me%nvals)) do ii = 1, me%nvals tarray(ii) = me%val(ii) end do call move_alloc(tarray, me%val) me%containersize = me%nvals end if end subroutine truncate_ga_spatialobj subroutine empty_ga_spatialobj(me) !------------------------------------------------------------------------ type(grw_spatialobjarray_type) :: me !< array to sorttruncate !------------------------------------------------------------------------ me%nvals = 0 end subroutine empty_ga_spatialobj !> adds the value to a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! element at the requested position will be replaced. subroutine placeat_ga_spatialobj(me, val, pos, length) type(grw_spatialobjarray_type) :: me !< array to place the value into type(sdr_spatialobj_type), intent(in) :: val !< value to place at the given position integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (pos > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = pos, length = length) end if me%nvals = max( pos, me%nvals ) me%val(pos) = val end subroutine placeat_ga_spatialobj !> adds the values starting from a given position inside the growing array. !! !! if the requested position is outside the current array bounds, the array !! will be resized accordingly. if it is inside the current array bounds, the !! elements starting from the requested position will be replaced up to !! the element at position `pos + size(val) - 1`. subroutine placeat_ga_spatialobj_vec(me, val, pos, length) type(grw_spatialobjarray_type) :: me !< array to append the value to type(sdr_spatialobj_type), intent(in) :: val(:) !< values to append integer, intent(in) :: pos !< predefined position !> optional length to expand the array integer, intent(in), optional :: length integer :: ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if ub = pos + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = pos, ub me%val(ii) = val(1+ii-pos) end do end subroutine placeat_ga_spatialobj_vec subroutine append_ga_spatialobj(me, val, length) type(grw_spatialobjarray_type) :: me !< array to append the value to type(sdr_spatialobj_type), intent(in) :: val !< value to append !> optional length to expand the array integer, intent(in), optional :: length ! value to append is larger than all existing ones, ! just put it to the end of the list, this captures ! also the case of empty lists. ! in this case foundpos = me%nvals + 1 holds. if (me%nvals+1 > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, length = length) end if me%nvals = me%nvals+1 me%val(me%nvals) = val end subroutine append_ga_spatialobj subroutine append_ga_spatialobj_vec(me, val, length) type(grw_spatialobjarray_type) :: me !< array to append the value to type(sdr_spatialobj_type), intent(in) :: val(:) !< values to append !> optional length to expand the array integer, intent(in), optional :: length integer :: lb, ub, ii if (me%nvals == huge(me%nvals)) then write(*,*) "reached end of integer range for growing array!" write(*,*) "aborting!!" stop end if lb = me%nvals + 1 ub = lb + size(val) - 1 if (ub > me%containersize) then ! expand the array, if its boundary is reached call expand(me = me, pos = ub, length = length) end if me%nvals = max( ub, me%nvals ) do ii = lb, ub me%val(ii) = val(1+ii-lb) end do end subroutine append_ga_spatialobj_vec subroutine expand_ga_spatialobj(me, pos, length) type(grw_spatialobjarray_type) :: me !< array to resize integer, intent(in), optional :: pos !< optional predefined position !> optional length to expand the array integer, intent(in), optional :: length type(sdr_spatialobj_type), allocatable :: swpval(:) integer :: explen, ii explen = 0 ! increase the container by the requested length of double it if( present(length) ) then explen = max( length, minlength ) else ! set the global minimum length, if doubling would be smaller than that explen = max(me%containersize, minlength) end if ! if a position is given, increase the container to at least the size to ! fit the position. if( present(pos) ) explen = max(explen, pos-me%containersize) ! if the current size plus explen exceeds the max container size, ! reduce the size to the max container size. if( (huge(me%containersize) - explen) <= me%containersize) then ! set max container size me%containersize = huge(me%containersize) else ! set the new container size me%containersize = me%containersize + explen end if if ( me%nvals > 0 ) then allocate(swpval(me%containersize)) do ii = 1, me%nvals swpval(ii) = me%val(ii) end do call move_alloc( swpval, me%val ) else ! me%nvals == 0 if ( allocated(me%val) ) deallocate( me%val ) allocate( me%val(me%containersize) ) end if end subroutine expand_ga_spatialobj end module sdr_spatialObj_module