atl_scheme_module Module

The scheme describes the discretization to use in the simulation.

There are two parts that need to be configured:

  • The spatial discretization
  • And the temporal discretization

Optionally a stabilization method may be defined for the scheme, see the atl_stabilization_module for more details on that definition.

The kind of spatial discretization is chosen via the name setting within the spatial table. The following spatial schemes are available:

  • 'modg' Modal DG discretization in 3D
  • 'modg_2d' Modal DG disretization in 2D
  • 'modg_1d' Modal DG discretization in 1D

The main configuration option for the spatial discretization is the polynomial degree to use to represent the state in the DG elements. This polynomial degree is set by the option m in the spatial table. It may either be a simple scalar value, defining a single polynomial degree to be used for all elements in the domain, or a table that provides polynomial degrees based on the local refinement level of elements. This can be achieved either by providing the polynomial degree for each level individually or by choosing a predefined scheme to choose the polynomial degree for the levels.

Individual definitions take the following form:

  m = {
    { level = 4, m = 4 },
    { level = 5, m = 6 }
  }

A predefined scheme is offered by 'fixedfact', where the polynomial degree on each level is computed by the following formula.

  m(iLevel) = nint( base_order * factor**(maxLevel-iLevel)) - 1

Here the base_order and factor need to be defined in the configuration, where the base_order sets the minimal polynomial degree (+1) that is to be used on the finest level. factor defines the factor, by which the scheme order is to be increased by each level. The polynomial degree definition for this case looks as follows:

  m = {
    predefined = 'fixedfact',
    base_order = 4,
    factor     = 1.5
  }

The default factor for the 'fixedfact' scheme is , which allows for approximately the same time step restriction across the levels for hyperbolic equations.

Besides the polynomial degree m it is also possible to choose the polynomial space to use for multidimensional representation. This modg_space is either 'P' or 'Q'. P indicates a multidimensional polynomial, where the sum of the mode indices is at most equal to the configured polynomial degree m. Q indicates that each index in the different dimensions itself may at most be m. The 'Q' space is the default but requires more computational effort and memory especially for 3D simulations.

The explicit time integration is configured by the temporal table within scheme. Following schemes are available:

  • 'explicitEuler', only for testing! (unstable)
  • 'explicitRungeKutta', with steps=4
  • 'imexRungeKutta', with steps=4
  • 'explicitRungeKuttaTaylor', with arbitrary number of steps
  • 'explicitSSPRungeKutta', with steps=2

The 'imexRungeKutta' scheme should be used when penalization terms are to be used in the flow simulations. The 'explicitRungeKuttaTaylor' is mainly intended for the solution of linear equation systems.

The time step width is controlled by a control subtable and the time step can either be chosend adaptively according to the CFL condition, or set as a fixed time step. See also atl_global_time_integration_module.

A complete definition of the scheme without the optional stabilization table takes the following form:

  scheme = {
    spatial = {
      name = 'modg',
      modg_space = 'Q',
      m = 11
    },
    temporal = {
      name = 'explicitRungeKutta',
      steps = 4,
      control = {
        name = 'cfl',
        cfl = 0.8
      }
    }
  }

For details on the optional stabilization see the atl_stabilization_module.


Uses

  • module~~atl_scheme_module~~UsesGraph module~atl_scheme_module atl_scheme_module aot_table_module aot_table_module module~atl_scheme_module->aot_table_module aotus_module aotus_module module~atl_scheme_module->aotus_module env_module env_module module~atl_scheme_module->env_module module~atl_modg_1d_scheme_module atl_modg_1d_scheme_module module~atl_scheme_module->module~atl_modg_1d_scheme_module module~atl_modg_2d_scheme_module atl_modg_2d_scheme_module module~atl_scheme_module->module~atl_modg_2d_scheme_module module~atl_modg_scheme_module atl_modg_scheme_module module~atl_scheme_module->module~atl_modg_scheme_module module~atl_stabilization_module atl_stabilization_module module~atl_scheme_module->module~atl_stabilization_module module~ply_modg_basis_module ply_modg_basis_module module~atl_scheme_module->module~ply_modg_basis_module tem_aux_module tem_aux_module module~atl_scheme_module->tem_aux_module tem_logging_module tem_logging_module module~atl_scheme_module->tem_logging_module tem_stencil_module tem_stencil_module module~atl_scheme_module->tem_stencil_module tem_tools_module tem_tools_module module~atl_scheme_module->tem_tools_module module~atl_modg_1d_scheme_module->aot_table_module module~atl_modg_1d_scheme_module->aotus_module module~atl_modg_1d_scheme_module->env_module module~atl_modg_1d_scheme_module->tem_aux_module module~atl_modg_1d_scheme_module->tem_logging_module module~atl_modg_1d_scheme_module->tem_tools_module aot_top_module aot_top_module module~atl_modg_1d_scheme_module->aot_top_module module~ply_dof_module ply_dof_module module~atl_modg_1d_scheme_module->module~ply_dof_module module~atl_modg_2d_scheme_module->aot_table_module module~atl_modg_2d_scheme_module->aotus_module module~atl_modg_2d_scheme_module->env_module module~atl_modg_2d_scheme_module->tem_aux_module module~atl_modg_2d_scheme_module->tem_logging_module module~atl_modg_2d_scheme_module->tem_tools_module module~atl_modg_2d_scheme_module->aot_top_module module~atl_modg_2d_scheme_module->module~ply_dof_module module~atl_modg_scheme_module->aot_table_module module~atl_modg_scheme_module->aotus_module module~atl_modg_scheme_module->env_module module~atl_modg_scheme_module->tem_aux_module module~atl_modg_scheme_module->tem_logging_module module~atl_modg_scheme_module->tem_tools_module module~atl_modg_scheme_module->aot_top_module module~atl_modg_scheme_module->module~ply_dof_module module~atl_stabilization_module->aot_table_module module~atl_stabilization_module->aotus_module module~atl_stabilization_module->tem_aux_module module~atl_stabilization_module->tem_logging_module module~atl_cons_positivity_preserv_module atl_cons_positivity_preserv_module module~atl_stabilization_module->module~atl_cons_positivity_preserv_module module~atl_covolume_module atl_covolume_module module~atl_stabilization_module->module~atl_covolume_module module~atl_positivity_preserv_module atl_positivity_preserv_module module~atl_stabilization_module->module~atl_positivity_preserv_module module~atl_spectral_viscosity_module atl_spectral_viscosity_module module~atl_stabilization_module->module~atl_spectral_viscosity_module module~ply_modg_basis_module->env_module module~ply_modg_basis_module->module~ply_dof_module module~ply_space_integration_module ply_space_integration_module module~ply_modg_basis_module->module~ply_space_integration_module module~atl_cons_positivity_preserv_module->aotus_module module~atl_cons_positivity_preserv_module->env_module module~atl_cons_positivity_preserv_module->tem_aux_module module~atl_cons_positivity_preserv_module->tem_logging_module module~atl_cons_positivity_preserv_module->tem_tools_module module~atl_covolume_module->aotus_module module~atl_covolume_module->env_module module~atl_covolume_module->tem_aux_module module~atl_covolume_module->tem_logging_module module~atl_covolume_module->tem_tools_module module~atl_covolume_module->module~atl_spectral_viscosity_module module~atl_positivity_preserv_module->aotus_module module~atl_positivity_preserv_module->env_module module~atl_positivity_preserv_module->tem_aux_module module~atl_positivity_preserv_module->tem_logging_module module~atl_positivity_preserv_module->tem_tools_module module~atl_spectral_viscosity_module->aotus_module module~atl_spectral_viscosity_module->env_module module~atl_spectral_viscosity_module->tem_aux_module module~atl_spectral_viscosity_module->tem_logging_module module~atl_spectral_viscosity_module->tem_tools_module module~ply_dof_module->env_module module~ply_space_integration_module->env_module tem_param_module tem_param_module module~ply_space_integration_module->tem_param_module

Used by


Variables

Type Visibility Attributes Name Initial
integer, public, parameter :: atl_modg_scheme_prp = 6
integer, public, parameter :: atl_modg_2d_scheme_prp = 7
integer, public, parameter :: atl_modg_1d_scheme_prp = 8

Derived Types

type, public ::  atl_local_timestep_type

Datatype to specify the timestepping method.

Components

Type Visibility Attributes Name Initial
real(kind=rk), public :: dt

The local timestep.

type, public ::  atl_oneDimStencil_type

type to define a one dimensional stencil for reconstructions.

Components

Type Visibility Attributes Name Initial
integer, public :: stencil

the 1D stencil in treelm coordinates.

integer, public :: nElems

the number of elements in the stencil, including the cell itself you reconstruct for.

integer, public, allocatable :: elemPos(:)

relative position of the stencil elements to the current cell. Note, that this vector has length (nElems-1) since the current cell itself is not stored here.

integer, public, allocatable :: ngElemPos(:)

relative position of the stencil elements in negative direction to the current cell.

Read more…
integer, public, allocatable :: bnd(:,:)

for each element of the mesh we store the lowest and highest left shift that build correct stencils (i.e. correct means: not including any boundary element). The first dimension is the number of elements associated with this stencil. The second dimension is 2, the first is the lowest possible left shift index the second is the highest possible left shift index.

type, public ::  atl_dimbydimstencil_type

type specifying all informations about the stencil for the dimension by dimension reconstruction.

Components

Type Visibility Attributes Name Initial
type(atl_oneDimStencil_type), public :: xStencil

the stencil in x direction

type(atl_oneDimStencil_type), public :: yStencil

the stencil in y direction

type(atl_oneDimStencil_type), public :: zStencil

the stencil in z direction

type, public ::  atl_scheme_type

type containing all the informations related to the scheme, e.g.: time and space discretization, scheme order, etc.

Components

Type Visibility Attributes Name Initial
integer, public :: scheme

integer representing the current discretization scheme.

integer, public :: nDoFs

the number of degrees of freedom for the selected scheme for a single cell and a single variable of the equation. For example we have: P1PM => nDofs=4, P2PM = 10). This number includes only the degrees of freedom which will be stored. We do not include the number of reconstructed degrees of freedom here!

integer, public :: nDoFsRecons

the number of reconstructed degrees of freedom for the selected scheme for a single cell and a single variable of the equation (including the reconstructed degrees of freedoms).

integer, public :: nFaceDofs

The number of dofs on the faces.

type(atl_local_timestep_type), public :: time

variable to specify the space integration. levelwise information of time discretization

Read more…
type(atl_modg_scheme_type), public :: modg

Parameters of the modal discontinuous Galerkin scheme if scheme is set to modg.

type(atl_modg_2d_scheme_type), public :: modg_2d

Parameters of the modal discontinuous Galerkin scheme if scheme is set to modg 2d.

type(atl_modg_1d_scheme_type), public :: modg_1d

Parameters of the modal discontinuous Galerkin scheme if scheme is set to modg 1d.

type(ply_modg_basis_type), public :: modg_basis

Informations about the polynomial basis of a MODG scheme.

type(atl_stabilization_type), public, allocatable :: stabilization(:)

The stabilization(s) for the scheme. Applied one after each other. Starting with index 1, then 2, ...

real(kind=rk), public, allocatable :: dl_prod(:,:)

Precomputed Scalar Products

real(kind=rk), public, allocatable :: dl_prodDiff(:,:)
real(kind=rk), public, allocatable :: temp_over(:,:,:)

Temp Arrays needed for evaluation of physical fluxes

real(kind=rk), public, allocatable :: temp_modal(:,:,:)
real(kind=rk), public, allocatable :: temp_nodal(:,:,:)

Functions

public function atl_schemeID2ndim(schemeID) result(ndim)

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: schemeID

Return Value integer


Subroutines

public subroutine atl_init_scheme(me, conf, minLevel, maxLevel)

subroutine to intialize a scheme as specified by a given lua script file.

Arguments

Type IntentOptional Attributes Name
type(atl_scheme_type), intent(out) :: me(minlevel:maxlevel)

the scheme you want to initialize.

type(flu_State), intent(in) :: conf

flu binding to lua configuration file.

integer, intent(in) :: minLevel

The global minimum level of the mesh

integer, intent(in) :: maxLevel

The global maximum level of the mesh

public subroutine atl_define_SchemeStencil(nDims, me)

Subroutine do define a specific stencil for a certain scheme.

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nDims

Number of dimensions to consider in the equation.

type(tem_stencilHeader_type), intent(inout) :: me

the neighbor list you want to init.

private subroutine compute_scalProd_DualLeg(dl_prod, dl_prodDiff, maxPolyDegree)

precompute the scalar products of the anstaz and test function

Arguments

Type IntentOptional Attributes Name
real(kind=rk), intent(out), allocatable :: dl_prod(:,:)
real(kind=rk), intent(out), allocatable :: dl_prodDiff(:,:)
integer, intent(in) :: maxPolyDegree

private subroutine init_local_time_integration(me)

r o u t i n e

t o

i n i t

t h e

t i m e s t e p p i n g

s c h e m e .

Read more…

Arguments

Type IntentOptional Attributes Name
type(atl_local_timestep_type), intent(inout) :: me

the scheme you want to initialize.