This setup illustrates the use of time dependent functions as background state in the linearized Euler equations. The setup makes use of a single line of elements and no deviations from the background state. The densitiy deviation and the complete state (background + deviation) is tracked in a single element.
-- Setup for linearized 2D Euler equations with varying background state.
--------------------------------------------------------------------------------
-- Parameters to vary --
degree = 19
poly_space = 'P'
-- ...the uniform refinement level for the periodic cube
level = 2
logging = { level = 4 }
-- Check for Nans and unphysical values
check = { interval = 1 }
-- ...the general projection table
projection = {
kind = 'l2p',
factor = 1.0
}
--...Configuration of simulation time
sim_control = {
time_control = {
max = 0.01,
min = 0.0,
interval = {iter = 1}
}
}
-- End Parameters to vary --
--------------------------------------------------------------------------------
-- Definition of the test-case.
-- Mesh definitions --
cubeLength = 2.0
level = 2.0
mesh = {
predefined = 'slice',
origin = {
(-1.0)*cubeLength/2.0,
(-1.0)*cubeLength/2.0,
0.0
},
length = cubeLength,
refinementLevel = level
}
-- Tracking
eps=cubeLength/(2^(level+1))
tracking = {
label = 'track_2d_density_temporalBackground',
folder = './',
variable = {'density', 'completeState'},
shape = { kind = 'canoND', object= { origin = {0., 0., 0.} } },
time_control = {
max = sim_control.time_control.max,
min = 0,
interval = sim_control.time_control.max/20.0
},
output = { format = 'ascii', ndofs = 1 }
}
background_dens = 1.0
background_velX = 100.0
background_press = 2.0
function sinus_dens(t)
return (background_dens + 0.5*math.sin(t*2*math.pi))
end
function sinus_velX(t)
return (background_velX + 0.1*math.sin(t*2*math.pi) )
end
function sinus_press(t)
return (background_press + 0.5*math.sin(t*2*math.pi))
end
-- Equation definitions --
equation = {
name = 'LinearEuler_2d',
isen_coef = 1.4,
background = {
density = sinus_dens,
velocityX = sinus_velX,
velocityY = 0.0,
pressure = sinus_press,
}
}
-- Scheme definitions --
scheme = {
-- the spatial discretization scheme
spatial = {
name = 'modg_2d',
m = degree,
modg_space = poly_space
},
-- the temporal discretization scheme
temporal = {
name = 'explicitRungeKutta',
steps = 4,
control = {
name = 'cfl',
cfl = 0.95
}
}
}
-- variables for gaussian pluse
c = math.sqrt(equation.isen_coef* background_press / background_dens)
ampl_density= background_dens/c
ampl_pressure= background_press/c
function gaus_dens(x,y,z)
d= (x*x)+(y*y)
return( ampl_density * math.exp(-d/0.01*math.log(2)) )
end
function ic_gauss_density(x,y,z)
d= x*x+y*y
return( 0.1 * math.exp(-d/0.01*math.log(2)) )
end
function ic_gauss_pressure(x,y,z)
d= x*x+y*y
return( ampl_pressure * math.exp(-d/0.01*math.log(2)) )
end
-- Initial Condition definitions --
initial_condition = {
density = 0.0,
velocityX = 0.0,
velocityY = 0.0,
pressure = 0.0
}
Projection: l2p
Polynomial representation: P
Filtering: -
Timestepping: explicitRungeKutta, 4 steps