This setup of linearized 3D Euler equations illustrates the computation of gradients in the variable system for tracking. See the 'variable' table.
We employ here a Taylor Runge-Kutta time integration scheme. This scheme allows the use of an arbitrary number of stages and yields an according high order for linear, autonomous systems. It enables the explicit simulation to achieve timesteps with a Courant factor greater than 1.
The configuration is found in ateles.lua
:
-- Simulation of an acoustic pulse with linearized 3D Euler equations
-- This setup illustrates the definition of derived quantities to track
-- in the domain.
-- See the 'variable' table.
simulation_name = 'linearEuler_gradients'
-- Parameters to vary --
degree = 11
poly_space = 'Q'
-- ...the uniform refinement level for the periodic cube
level = 2
logging = { level = 4 }
-- Check for Nans and unphysical values
check = { interval = 1 }
-- ...the general projection table
projection = {
kind = 'l2p',
factor = 1.0
}
--...Configuration of simulation time
sim_control = {
time_control = {
max = {iter = 20},
min = 0.0,
interval = {iter = 1}
}
}
-- Equation definitions --
bg_dens = 1.225
bg_velX = 100.0
bg_velY = 0.0
bg_velZ = 0.0
bg_press = 100000.0
equation = {
name = 'linearEuler',
numflux = 'godunov',
isen_coef = 1.4,
background = {
density = bg_dens,
velocityX = bg_velX,
velocityY = bg_velY,
velocityZ = bg_velZ,
pressure = bg_press
}
}
-- Mesh definitions --
cubeLength = 4.0
mesh = {
predefined = 'cube',
origin = { -2.0, 0.0, 0.0 },
length = 4.0,
refinementLevel = 2
}
variable = {
{
-- Arbitrary space-time function for a variable,
-- here the constant background density.
name = 'bg_density',
ncomponents = 1,
vartype = 'st_fun',
st_fun = bg_dens
},
-- Operations allow us to combine any of the available
-- variables to new derived ones:
{
name = 'full_density',
ncomponents = 1,
vartype = 'operation',
operation = {
kind = 'addition',
input_varname = {'density', 'bg_density'}
}
},
{
name = 'grad_fulldensity',
ncomponents = 3,
vartype = 'operation',
operation = {
kind = 'gradient',
input_varname = 'full_density',
}
},
{
name = 'gradX_fulldensity',
ncomponents = 1,
vartype = 'operation',
operation = {
kind = 'extract',
input_varname = 'grad_fulldensity',
input_varindex = {1}
}
},
{
name = 'grad_density',
ncomponents = 3,
vartype = 'operation',
operation = {
kind = 'gradient',
input_varname = 'density',
}
},
{
name = 'gradX_density',
ncomponents = 1,
vartype = 'operation',
operation = {
kind = 'extract',
input_varname = 'grad_density',
input_varindex = {1}
}
}
}
-- Tracking
tracking = {
label = 'track_grads',
folder = './',
variable = {
'density',
'full_density',
'grad_density',
'gradX_density',
'grad_fulldensity',
'gradX_fulldensity'
},
shape = {
kind = 'canoND',
object= {
origin = {0.0, 0.0, 0.0}
}
},
time_control = {
max = sim_control.time_control.max, -- final Simulated time
min = 0,
interval = {iter = 10}
},
output = {
format = 'ascii', use_get_point = true
}
}
-- Scheme definitions --
scheme = {
-- the spatial discretization scheme
spatial = {
name = 'modg',
m = degree,
modg_space = poly_space
},
-- the temporal discretization scheme
temporal = {
name = 'explicitRungeKuttaTaylor',
steps = 8,
control = {
name = 'cfl',
cfl = 2
}
}
}
-- variables for gaussian pluse of the initial condition
c = math.sqrt( equation.isen_coef * equation.background.pressure
/ equation.background.density )
ampl_density= equation.background.density/c
ampl_pressure= equation.background.pressure/c
function ic_gauss_density(x,y,z)
d= x*x+y*y+z*z
return( ampl_density * math.exp(-d/0.01*math.log(2)) )
end
function ic_gauss_pressure(x,y,z)
d= x*x+y*y+z*z
return( ampl_pressure * math.exp(-d/0.01*math.log(2)) )
end
-- Initial Condition definitions --
initial_condition = {
density = ic_gauss_density,
velocityX = 0.0,
velocityY = 0.0,
velocityZ = 0.0,
pressure = ic_gauss_pressure
}
Projection: l2p
Polynomial representation: Q
Filtering: -
Timestepping: explicitRungeKuttaTaylor, 8 steps